人工智能领域选题?人工智能领域
15
2024-06-10
人工智能概念诞生于1956年世界达特茅斯会议上,但是走出实验室进入大众视野是这几年的事情。而且即使阿尔法狗打败了柯洁,可是它仅仅是单一领域的弱人工智能,离《西部世界》、《机械姬》这样的强人工智能还有很远的路要走。在2019年的人工智能商业化报告中详细阐述了现阶段人工智能所处的阶段以及未来的趋势,有兴趣的可以在评论处链接详细查看
人工智能是未来的一个大趋势,而大学开设的人工智能专业的主要课程我们可以参看各大高校的参考方案。
1.东南大学(第四次学科排名中电子科学与技术专业评价为A)
2018年开始招收本科生,主要学习课程有Python、神经网络、数字图像处理、数字信号处理、数据挖掘、人机交互等。
2.北京邮电大学(第四次学科排名中电子科学与技术专业评价为A-)
3.天津大学(第四次学科排名中电子科学与技术专业评价为B+)
列举了一些高校的课程安排,大概都有数据挖掘、数据结构、自然语言处理等,南大、北京航空航提都开设有人工智能专业,由于是新开设的学科,有些培养方案都未完全制定,各种课程的学习也还在探索中,但大都依托当初的计算机专业,从而衍生出人工智能专业,或者另外开辟出人工智能学院。
如有帮助请点赞、关注,感谢!@大学电商人
01无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等
02人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
03机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
04声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
05智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
06智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
07智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作
08个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
09医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像
10图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
人工智能共涉及九大板块,具体包括:
1、核心技术板块(AI芯片、IC、计算机视觉、机器学习、自然语言处理、机器人技术、生物识别技术、人脸识别技术、语音识别、大数据处理等)
2、智能终端板块(VR/AR、人工智能服务平台、家居智能终端、3G/4G智能终端、金融智能终端、移动智能终端、智能终端软件、智能硬件、软件开发平台、应用系统等)
3、智慧教育板块(教育机器人、智慧教育系统、智慧学校、人工智能培训等)
4、智能机器人板块(服务机器人、农业机器人、娱乐机器人、排险救灾机器人、医用机器人、空间机器人、水下机器人、特种机器人等)
5、智慧城市及物联网板块(智慧交通,智能电网,政务大数据应用,公共安全、智慧能源应用,智慧社区、智慧城建,智慧建筑,智慧家居,智慧农业、智慧旅游、智慧办公、智慧娱乐,智慧物流、智慧健康保障、智慧安居服务、智慧文化服务等)
6、智慧医疗板块(医疗影像人工智能、智能辅助诊断提醒/临床决策诊断系统、外科手术机器人、医疗服务机器人、医疗语音识别录入、混合现实技术医疗大数据平台、数据分析系统(BI)、精准医疗等)
7、智能制造板块(智能化生产线、工业机器人、工业物联网、工业配件等)
8、智能汽车板块(汽车电子、车联网、自动驾驶、无人驾驶技术、激光雷达、整车厂商等)
9、智慧生活板块(未来生活模式、智能生活家居、智能家电、3C电子、智能穿戴等)
人工智能研究的主要内容包括:知识表示、自动推理、搜索方法、机器学习、知识获取与处理系统、自然语言理解、智能机器人、自动程序设计等方面。
小编觉得从人工智能的应用出发,就可以了解人工智能的具体业务。
自动驾驶通过人工智能处理视觉图像声音以及雷达探测到的信息进行自动驾驶,目前自动驾驶的分级分为5各级别,L1依靠汽车雷达实行探测与前车的实时距离自动控制加减速,从而保持与前车的安全距离。L2配备了车道偏离系统同时可以实现自动变道。L3道路环境的观察者由人变更为系统,系统已经完全能够识别出直线、弯道、红绿灯、限速路牌,路上行走奔跑的人猫狗等等各种环境。L4情况下人只需要在极端天气下进行决策。L5情况下人只要在里面就行了。
AI投资贝莱德集团正是全球最大的资产管理公司,对于公司的主动型基金业务,进行了重新安排,首先做的就是辞退一些主动型基金经理,取而代之的就是引入量化投资,人工智能和量化投资又简直是天作之合,未来主动投资和量化投资的竞争谁赢谁输还尘埃未定。
AI医疗人工智能在医疗领域的应用也相当丰富,从应用场景来看,主要分成了虚拟助理、医学影像、药物挖掘、营养学等四大方面。通过类似SIRI的人工智能助手,减少了我们就医的成本,也减少了医生的负担;人工智能在医学影像的应用可以大大减少对于这类专业医生的需求,同时也提升了影片识别的精度;人工智能可以提升医药的研发进程;最后也能带给我们更加精准合理的营养学建议。
当然这仅仅是一部分目前的应用,未来人工智能的应用场景会更广