人工智能应用调查研究 人工智能应用调查研究报告

kk 0 2024-01-16

大家好,如果您还对人工智能应用调查研究不太了解,没有关系,今天就由本站为大家分享人工智能应用调查研究的知识,包括人工智能应用调查研究报告的问题都会给大家分析到,还望可以解决大家的问题,下面我们就开始吧!

本文目录

  1. 人工智能的8个技术在生活中的应用
  2. 人工智能遵循的四大基本道德
  3. 如何用人工智能研究用户体验?
  4. 人工智能需要有大数据支撑,人工智能与大数据究竟是怎样结合的?

人工智能的8个技术在生活中的应用

1.电子邮件

一般来说,电子邮件供应商会使用人工智能算法来过滤垃圾邮件。考虑到全球77%的电子邮件都是垃圾邮件,这是非常有效的。谷歌表示,只有不到0.1%的垃圾邮件能够通过其人工智能过滤器。此外,电子邮件营销人员会利用人工智能追踪谁在何时打开邮件,以及他们对此如何回应。谷歌的AI工具会在云存储中读取文档,以便将最合适的材料呈现给用户。不过也有人因此质疑,通过阅读内容来瞄准广告的算法正在侵犯我们的隐私。

2.手机

人工智能将智能手机上的许多功能都自动化了,从文本常用关联词到声控个人助理都是非常典型的例子。甚至于手机屏幕适应周遭光线的方式、电池寿命的优化等等也取决于人工智能。但也有一些批评人士担心这其中隐藏的风险。比如,无论你是否在打电话,声控助理都会学习并试图理解你说的所有话,不管目的是否是否善意,这就为监视监听创造了机会。

3.银行

在世界各地,网上银行极为普遍,基于人工智能的应用也屡见不鲜:客服接待、核验用户身份、打击欺诈、评估客人信誉并据此做出贷款决定等等。

人工智能可以监控交易,人工智能聊天机器人可以回答你与账户相关的问题。在SAS研究所最近的一项调查中,超过三分之二的银行表示,它们使用人工智能聊天机器人,近63%的银行表示,它们使用人工智能进行欺诈检测。

4.医学

要拍x光片吗?很多人脑海中浮现的画面是:临床医生穿着白大褂进行研究诊断。但现在可以暂时想象一下另外一种可能:最初的分析由人工智能算法完成。事实上,AI非常擅长诊断问题。在一次用胸透检测癌症的实验中,一种名为DLAD的人工智能算法击败了18名医生中的17名。

此外,与银行业一样,聊天机器人也被部署在医疗保健领域,用于与患者沟通。比如预约,甚至作为医生的虚拟助手。

然而,批评人士表示人工智能诊断不能成为一个完全不透明的“黑匣子”。人工智能也有误判的可能。医生需要知道它们是如何工作的才能信任它们。此外这也涉及到隐私、数据保护和公平的问题。

5.自动驾驶

人工智能是迈向自动驾驶汽车的核心。在新冠疫情影响下,自动驾驶技术开始加速发展,“无人接触”的快递物流服务就是其目标之一,中国现在就有一支“机器人出租车”车队在上海运营。但是自动驾驶的安全问题依然悬而未决。在过往发生的事故中,因自动驾驶汽车造成的伤亡至今令人心有余悸。另外关于事故的追责和伦理问题,目前也存在争议。

6.火

人工智能遵循的四大基本道德

人工智能的发展,需要遵守的四个AI伦理原则:

第一个原则是安全可控是最高原则;

第二个是促进人类平等地获得技术和能力是创新愿景;

第三个则是人工智能的存在价值不是超越人、代替人,而是教人学习和成长;

第四个是人工智能的终极理想应该是带给我们更多的自由和可能。

世界上不只有大公司需要AI的技术和能力,几千万的组织都需要。防止技术的不平等,导致人们在生活、工作上的不平等,这是我们需要思考的。

如何用人工智能研究用户体验?

一个路子是用自然语言处理分析用户体验调查结果(用户反馈)。

通过分析用户反馈,可以:

通过进行情绪或基于主题的时间序列分析来发现隐藏的趋势和模式通过执行异常检测查找可能在QA中漏掉的错误和设计问题根据用户反馈获得运行A/B测试的新机会了解用户的功能请求/需求将客户区分为有针对性的消息-例如,可以识别所有不满意的客户或要求提供某些功能的人员,并且如果有非匿名数有具体的目标-如实时查找用户情绪了解你的数据-是大还是小?数据是来自多个数据源还是有中断的时间序列数据?明智地选择环境/库/API根据你的目标选择分析决定分析结果是谁,以及他们将如何处理-这是A/B测试吗?是否要进入产品线?生成报告还是创建实时仪表板?

了解清理数据可能需要的预处理技术类型非常重要。用户反馈数据非常肮脏,包含HTML标签,语法错误,表情文本(希望转换成情感分类器可以获取的标记),并发誓在分析用户情感时还想保留的词。

需要创建自定义停用词列表并忽略包含小于某些令牌阈值的简短注释。“我喜欢这个”并不是有见地的数据,但是如果你正在进行情绪分析,它会歪曲你的总体情绪分数,而不会让你知道他们指的是什么,或者他们觉得自己的方式如何。但是,如果在大型设计发布后查看用户情绪,则可能希望保持这种情绪,如果对用户指的是什么有好的想法。

当然,应该使用stemmer或lemmatizer,并希望通过Scikit-Learn的CountVectorizer或R的RemoveSparseWords来增加稀疏性,以帮助开发有意义的群集,并减少创建适合数据的模型的机会。

人工智能需要有大数据支撑,人工智能与大数据究竟是怎样结合的?

图片来自“123rf.com.cn”

大数据和人工智能工具的结合可以实现新的分析和自动化形式,而在企业应用程序中,这些技术仍在不断发展和演变。

Dun&Bradstreet公司今年1月发布了一项调查结果,调查发现,40%的受访者表示部署人工智能技术增加了更多的工作岗位。这一发现似乎与采用人工智能将减少就业机会的担忧相反,而在调查中,100名受访者中只有8人表示,他们的组织由于采用人工智能而裁员。

这是Dun&Bradstreet公司的调查团队于去年12月在波士顿的人工智能世界会议和博览会上对与会者进行的调查,这就提出了一个问题,即企业将如何适应人工智能和大数据等新兴技术,尤其是处在这个前所未有的数字化颠覆时代。

企业领导者面临数字化颠覆的现实,发现即使在人工智能上采用快速跟随策略也很难应对。迅速发展的技术以及人工智能对未来工作的影响,将导致工作岗位的变化和知识型员工难以保留等迫在眉睫的问题。

采用人工智能的好处以及带来的问题

Dun&Bradstreet公司的调查发现,人工智能主要用于分析、自动化和数据管理。正在启用新功能,使原本不可访问的域更容易访问。例如,大学教授现在可以使用一系列工具来检测作弊行为,这曾经是一个人工检验和基于经验的繁琐过程。在人力资源部门,也采用了能够筛选简历、预测应聘者是否合格成功的技术,以及执行许多其他任务的技术,这些任务曾经被认为难以处理。

不仅仅是人工智能功能使这些应用程序更加可行,它也是对业务任务的重新构想,以利用现有数据并开辟新的思维方式。与此同时,不断变化的隐私法规使企业和网络犯罪分子以惊人的新方式使用先进的技术,这迫使企业采用更多资源处理与数据安全和治理相关的问题。

当今的业务环境越来越复杂,很难应对这种混乱。随着第二代数字原生代的兴起,需要对不断增长的人工智能和大数据的应用进行探索和研究。

根据Dun&Bradstreet公司的调查,人工智能技术目前在大多数组织中都有一定程度的使用。这一发现与其他行业机构的研究是一致的,这些研究指出,人工智能技术已从认识和早期采用过渡到全面实施,并从使用中创造了附加业务价值。

现实情况是,许多人工智能应用程序,特别是那些需要丰富的稳定数据集合得出结论的人工智能应用程序,一直受到数据发现和管理的复杂性的困扰。然而,随着大数据技术的发展,使组织能够保持和管理越来越多的数据,利用物联网和移动网络等新技术的新应用开始产生有希望的结果。其中一些例子包括执法中的面部识别、智慧城市技术、自动驾驶汽车和无人机等。

谁在采用企业人工智能并在做什么?

对人工智能从业者的调查通常包括三类:已经成功部署人工智能应用程序的人员;正在部署人工智能项目,但仍在创新和投资回报率之间寻求平衡的人员;仍在探索人工智能技术或尚未对企业中的人工智能做出认真承诺的人员。而关于这三个群体的相对规模存在重大争议。

Dun&Bradstreet公司的调查是在一次以人工智能为重点的活动中进行的,近半数受访者(44%)表示他们的公司正在部署该技术,而20%的受访者表示其公司已经部署人工智能技术。23%的人表示,正在计划实施。

寻求采用人工智能技术解决复杂问题的企业有时会感到有点困惑,对其结果不满意,这表明存在一些可解释性问题。如果人工智能方法没有得到很好的理解,那么他们很难接受看似违反直觉的结果。这一点在Dun&Bradstreet公司的调查结果中比较突出,46%的受访者表示,理解人工智能如何得出结论是他们组织面临的一个问题。只有三分之一的人表示,他们完全理解他们的人工智能系统是如何得出结论的。

对人工智能结果不满意的其他一些原因来自于基本问题的制定。例如,由人类训练的监督人工智能方法存在基于潜在误导性强化现有知识做出决策的风险,特别是在没有提前采取正确步骤来解决偏差的情况下——在数据、算法本身或在他们产生的结果的解释中。

问题制定依赖于数据科学家确保使用正确方法和数据的能力,并要求正确的问题支持得出的结论。问题制定不完整的风险强调需要有可解释的人工智能和更多关于思想和方法多样性的对话,以便技术对企业更有价值。

人工智能和大数据的正确组合

仔细考虑人工智能使用的数据同样重要。在Dun&Bradstreet的调查中,很多组织表示,缺乏正确的数据是进一步实施人工智能的最大障碍之一,28%的受访者认为缺乏内部专业知识也是一个主要障碍。

随着数据的生产和存储量呈指数级增长,人们将开始看到人工智能系统的适应和改进。

虽然人工智能从业者可能对数据量有合理的处理,但大数据环境中的变化速度仍然是某些人工智能应用程序的重要问题。流媒体数据是数据样本经常被忽视的一个很好的例子。

数据准确性是另一个越来越重要的问题,特别是对于分类方法和其他无监督的人工智能方法。数据是必须建立任何技术(尤其是人工智能)的基础。错误的数据基础(例如使用包含偏差或被错误操作的数据)通常会导致错误的技术方法产生错误的见解,而且可以通过压力以消极的方式得到强化。

人工智能的发展对其商业价值至关重要

但是,随着数据的持续生成和存储量呈指数增长,人们将开始看到人工智能系统的适应和改进。这种演变是人工智能的商业价值所固有的特征。正如人工智能技术在某种程度上具有自我诊断的能力一样,人们将开始看到出现复杂的系统,这些系统不仅可以从人类代理那里学习,而且还可以从经验中学习——其很好的例子包括对抗人工智能和集成方法。

此外,下一代数字原生代的人工智能和数据科学从业者将更加细致地对系统进行观察。这些未来的数据科学家将进行鉴别诊断,就像医生一样,可以区分具有相似症状的疾病。

人工智能和大数据的结合将继续发展,组织可以确保继续增加对该技术的实验和部署。然而无法保证这种演变将朝着积极的方向发展。事实上,一些伟大的预言得出的结论却恰恰相反。

数字颠覆的新科学与商业和人工智能的发展息息相关。似乎可以肯定的是,这种进化的速度将继续增加。事实上,人工智能和大数据并不总是完美地结合在一起。在这一领域,最终会产生最佳结果的是不同分析方法和思维的日益成熟。

关于本次人工智能应用调查研究和人工智能应用调查研究报告的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。

上一篇: 人工智能小冰 看法 人工智能小冰写的诗
下一篇: 人工智能引擎与游戏?人工智能引擎与游戏引擎区别
猜你喜欢