人工智能 用于 领域 人工智能 用于 领域的应用

mandy 0 2023-12-06

大家好,今天小编来为大家解答以下的问题,关于人工智能,领域的应用这个很多人还不知道,现在让我们一起来看看吧!

本文目录

  1. 计算机的应用领域分为哪六个方面
  2. 人工智能在金融领域有哪些应用场景和作用?
  3. 人工智能技术在行业里有什么具体的应用?
  4. 人工智能具体涉及哪些领域?

计算机的应用领域分为哪六个方面

计算机的6大应用领域:科学计算、实时控制、数据处理、计算机辅助、网络应用、人工智能。

1、科学计算:

科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算。在现代科学技术工作中,科学计算问题是大量的和复杂的。利用计算机的高速计算、大存储容量和连续运算的能力,可以实现人工无法解决的各种科学计算问题。

2、实时控制

过程控制是利用计算机及时采集检测数据,按最优值迅速地对控制对象进行自动调节或自动控制。采用计算机进行过程控制,不仅可以大大提高控制的自动化水平,而且可以提高控制的及时性和准确性,从而改善劳动条件、提高产品质量及合格率。因此,计算机过程控制已在机械、冶金、石油、化工、纺织、水电、航天等部门得到广泛的应用。

3、数据处理

数据处理是指对各种数据进行收集、存储、整理、分类、统计、加工、利用、传播等一系列活动的统称。据统计,80%以上的计算机主要用于数据处理,这类工作量大面宽,决定了计算机应用的主导方向。

4、计算机辅助

计算机辅助技术包括CAD、CAM和CAI等。计算机辅助设计是利用计算机系统辅助设计人员进行工程或产品设计,以实现最佳设计效果的一种技术。它已广泛地应用于飞机、汽车、机械、电子、建筑和轻工等领域。例如,在电子计算机的设计过程中,利用CAD技术进行体系结构模拟、逻辑模拟、插件划分、自动布线等,从而大大提高了设计工作的自动化程度。

5、网络应用

计算机技术与现代通信技术的结合构成了计算机网络。计算机网络的建立,不仅解决了一个单位、一个地区、一个国家中计算机与计算机之间的通讯,各种软、硬件资源的共享,也大大促进了国际间的文字、图像、视频和声音等各类数据的传输与处理。

6、人工智能。

人工智能(ArtificialIntelligence)是计算机模拟人类的智能活动,诸如感知、判断、理解、学习、问题求解和图像识别等。现在人工智能的研究已取得不少成果,有些已开始走向实用阶段。例如,能模拟高水平医学专家进行疾病诊疗的专家系统,具有一定思维能力的智能机器人等等。

人工智能在金融领域有哪些应用场景和作用?

传统金融如何利用数据?

所谓前事不忘后事之师,在了解AI对传统金融行业带来的影响之前,我们可以借鉴以往的经验,看看传统金融行业对现有数据的利用情况。

在过去的几十年甚至百十年中,无数的银行家,金融工程师,数据分析师,金融从业者为我们设计了很多非常便利方便的金融产品,比如信用卡业务,个人贷款业务,在这些产品迭代的过程中他们形成了非常严谨的迭代和风险控制的方案。

他们所利用数据的特点是针对这些金融产品业务区分能力强,但是覆盖人群相对较低。

就如上图所示的冰山,传统金融行业对数据的利用率只有10%左右,而Fintech公司需要做的就是挖掘那些隐藏在冰山之下的数据,把金融产品带给更广泛的人群。

互联网金融怎么做?

随着大数据解决方案的普及,我们可以搜集更多维度的数据来更精细的进行用户画像,包括利用一些行业数据,用户的互联网浏览数据,司法执行数据,第三方信用数据,出行数据,电商平台的交易数据,电话通讯数据和社交数据。这些数据的覆盖人群会远远超过现有的金融行业所使用的数据。

而AI就是对这些数据进行组合,从而挖掘出有效的特征。

如何利用好这些维度很高的数据,需要一个智能的解决方案。因为这些数据大多是非结构化的数据,可能来自邮件、视频、文本、语音、点击浏览行为、社交网络等多种渠道。数据的量级和清洗是一个重要的环节。

而大数据的一些解决方案为我们提供了较好的基础设施。

关于AI

在此之上人工智能可以带给我们大量的自动的规则学习,同时带给我们更加强大的表达能力,而不仅仅是一些线性模型。当我们加入更多数据的时候,关于人的描述已经上升到更高维度的空间中,这时,我们就需要表达能力更强的模型,比如GBDT的模型,有几千个有权重的子树,比如深度学习网络,多层的神经元通过加工,自动抽取最优组合。

一个传统的贷款业务可能需要2-3天来审批,而一个基于人工智能模型的自动审批方案可能只需要几秒钟就可以完成。同时有些传统风控模型的迭代周期可能要数个月甚至数年,但是人工智能的模型迭代可以非常便捷和自动。

AI所做的就是极大简化这个过程,提高效率,同时可以大大提高模型验证和迭代的速度。

AIinDianrong

在点融,我们应用于风控的人工智能解决方案主要有以下三个部分:

数据搜集和处理

风险控制和预测模型

信用评级和风险定价

便利可扩展的数据存储和处理方案是重要的基础架构。

各种非结构化数据到结构化数据的灵活转换是保证应用的重要一环。

欺诈的识别是风险控制的第一步,如果利用第三方数据高准确度地识别一些有欺诈嫌疑的用户是这一个环节需要解决的问题。

灵活地支持人工智能的风控引擎和规则引擎是保证人工智能应用的业务的重要工具。点融的规则引擎同时可以支持简单的条件规则、也可以支持决策树的规则,以及更加复杂的GBDT和深度神经网络模型。

通过知识图谱我们可以将人群的关系更直接地映射到图数据里,通过这些关系的远近、和异常拓扑结构的识别,我们可以发现更多更深层次的风险模式,通过识别这些模式可以有效地减少团伙欺诈。

在风险级别识别和风险定价的模块里。我们会结合三类打分板:专家打分板,传统的逻辑回归打分板以及人工智能打分板在不同场景下针对用户进行不同级别的人群划分。针对不同级别的人群和不同产品的需求我们会试算出针对于该风险人群的定价。

我们点融也在积极地将人工智能模型作为主要风控手段迭代改进自己的系统中。

同时我们也在应用深度学习解决一些业务冷启动的问题。利用transferlearning我们可以大大加快模型在新业务数据不足的情况下收敛的速度。

总结

最后引用薛贵荣博士的博客中一段话:

“基于实例的迁移学习的基本思想是,尽管辅助训练数据和源训练数据或多或少会有些不同,但是辅助训练数据中应该还是会存在一部分比较适合用来训练一个有效的分类模型,并且适应测试数据。于是,我们的目标就是从辅助训练数据中找出那些适合测试数据的实例,并将这些实例迁移到源训练数据的学习中去。”

人工智能技术在行业里有什么具体的应用?

谢邀。

前段时间刚好看到麦肯锡发布的一个关于《人工智能:下一个数字前沿?》的报告,里面介绍了人工智能技术在5个行业的具体应用,摘取出来供你参考。希望对你有帮助。

1.零售:连接消费者,改善购物体验

图像识别、机器学习和自然语言处理等技术等发展使得智能服务机器人能够轻松与顾客打招呼、交流,可以预测订单,提供引导;通过机器学习,可以根据消费者到个人资料进行个性化促销;在顾客浏览店铺商品时,店内的信标(Beacon)也可以通过手机向他们发送优惠信息基于深度学习的计算机视觉技术,可以识别购物者打包的商品;加上传感器所获取的数据,AI使得自动结帐和付款成为可能使用深度学习技术的无人机快递完成了零售业务链最后一英里的交付,能够实现避障并处理收货人不在的状况具有计算机视觉和深度学习功能的互动屏幕和桌面可以识别商品并推荐适合消费者的相关产品自动购物车会在商店中跟随顾客,并运送商品到顾客的上车点,或通过机器人、无人机送货上门利用机器学习,商店开业根据竞争对手的价格、天气情况、库存情况等数据信息实时调整和优化商品价格,从而最大限度地提高收入通过人工智能强化的机器人可以持续跟踪仓储信息,识别空货架并补货,同时,其他机器人也可以在仓库中进行打包

2.电力:更少的电站,更智能的电网

通过传感器和机器学习系统,可以通过对风力条件的实时调整,最大限度地提高发电效率通过机器学习可以预测电力的供需峰值,从而最大限度地利用间歇性可再生能源智能电线与机器学习的结合,可以实现实时的电力调度,改善电网负载无人机和小型机器人可以在不关停电路的情况下,检测和预测设备故障机器可以替代人工自动记录数据并检查设备状态,从而减少对技术人员的需求数量,使他们可以花更多时间解决其它问题在设备检修过程中,现场工作人员仍然可以实时接收运行数据,以减少响应时间及中断的影响虚拟助手可以根据业务历史对消费者进行分类,利用机器学习提供坏账预警服务基于机器学习,智能仪表可以根据使用量和天气等因素,自动调整用电数据

3、医疗:更快的诊断,更好的治疗

机器学习程序可以通过可穿戴设备远程分析患者的健康状况,并将数据与其医疗记录进行比较,提供健康建议并预警疾病风险使用机器学习和其他相关的AI技术,设备可以进行自主诊断并帮患者做简单的体征指标检查,而无需人力辅助,从而减轻医生和护士的工作压力根据患者的历史医疗数据和记录,基于AI的诊断工具可以更准确地诊断疾病根据医疗和环境等因素,AI算法可以预测患者行为和疾病的概率,从而优化医院运营、排班计划和库存管理利用AI,可以分析患者的病史和环境因素,从而确定患有疾病风险的对象,并指导他们进行预防性保健互动信息亭形式的虚拟助理,可以帮助患者进行登记,并将其转交给合适的医生进行诊断,缩短患者等待的时间,改善医疗体验通过机器学习工具可以对特定患者的需求设计个性化的治疗方案,从而提高治疗效率,改善治疗效果根据人工智能对大众的健康分析结果,可以通过鼓励护理人员更好地管理患者健康,并帮助患者降低住院费用和治疗成本

4、制造:更智能、更灵活

对于工程和研发人员而言,人工智能工具的使用意味着更快的周转时间和更少的迭代次数,效率得到大大提升获取全球各地的供应商信息,降低采购过程中的成本,更好地管理供应链,使得收益最大化项目经理可以使用基于人工智能的高级分析,从而提高审查流程的有效性AI可以帮助企业重新审视制造流程和生产线,并针对性地进行优化和调整,从而以降低成本、减少资源浪费,加快企业上市速度制造商可以利用AI技术为客户提供更优质的售后服务工作人员与工厂的生产线必须更好地进行协同作业,从而挖掘AI的全部潜力,实现其中的价值

5、教育:不断优化教学形式和效果

解决教育资源分布不均的问题,并根据市场需求帮助政府机构不断优化教育制度,提高人才与市场的匹配度为学生提供更有针对性的教学计划,改善学习成果,并帮助学校不断改进课程组合,提高毕业生就业率通过自适应学习系统,在合适的时间以最佳方式向每个学生提供适当的内容,打造个性化教学自然语言、计算机视觉和深度学习可以帮助教师回答学生的常规问题或担任教学助教,使得教师可以把更多的时间花在更具价值的教学环节中

人工智能具体涉及哪些领域?

人工智能共涉及九大板块,具体包括:

1、核心技术板块(AI芯片、IC、计算机视觉、机器学习、自然语言处理、机器人技术、生物识别技术、人脸识别技术、语音识别、大数据处理等)

2、智能终端板块(VR/AR、人工智能服务平台、家居智能终端、3G/4G智能终端、金融智能终端、移动智能终端、智能终端软件、智能硬件、软件开发平台、应用系统等)

3、智慧教育板块(教育机器人、智慧教育系统、智慧学校、人工智能培训等)

4、智能机器人板块(服务机器人、农业机器人、娱乐机器人、排险救灾机器人、医用机器人、空间机器人、水下机器人、特种机器人等)

5、智慧城市及物联网板块(智慧交通,智能电网,政务大数据应用,公共安全、智慧能源应用,智慧社区、智慧城建,智慧建筑,智慧家居,智慧农业、智慧旅游、智慧办公、智慧娱乐,智慧物流、智慧健康保障、智慧安居服务、智慧文化服务等)

6、智慧医疗板块(医疗影像人工智能、智能辅助诊断提醒/临床决策诊断系统、外科手术机器人、医疗服务机器人、医疗语音识别录入、混合现实技术医疗大数据平台、数据分析系统(BI)、精准医疗等)

7、智能制造板块(智能化生产线、工业机器人、工业物联网、工业配件等)

8、智能汽车板块(汽车电子、车联网、自动驾驶、无人驾驶技术、激光雷达、整车厂商等)

9、智慧生活板块(未来生活模式、智能生活家居、智能家电、3C电子、智能穿戴等)

关于本次人工智能和领域的应用的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。

上一篇: 人工智能 有趣小故事?人工智能 有趣小故事简短
下一篇: 人工智能 有名人?人工智能的名人
猜你喜欢