人工智能领域选题?人工智能领域
15
2024-06-10
大家好,今天来为大家解答fpga在人工智能这个问题的一些问题点,包括fpga人工智能方向也一样很多人还不知道,因此呢,今天就来为大家分析分析,现在让我们一起来看看吧!如果解决了您的问题,还望您关注下本站哦,谢谢~
本文目录
AI人工智能需要使用高性能的芯片来支持其计算需求。以下是一些常用的AI芯片:
1.GPU(图形处理器):GPU是一种高度并行化的处理器,可以同时执行多个任务,适合于AI训练和推理等计算密集型任务。
2.ASIC(专用集成电路):ASIC是一种定制化的芯片,针对特定的应用场景进行设计和优化,可以提供更高的性能和效率。
3.FPGA(现场可编程门阵列):FPGA是一种可编程逻辑芯片,可以根据需要重新配置其电路结构,适合于快速原型开发和实验。
4.CPU(中央处理器):CPU是计算机系统中最基本的处理器之一,虽然不如GPU和ASIC在AI计算方面表现出色,但仍然可以支持一些基本的AI应用。
总之,不同类型的AI应用可能需要不同类型的芯片来支持其计算需求。随着技术不断发展和创新,未来还会有更多新型芯片涌现出来。
首先,谢邀回答。
AI领域将会是接下来科技行业的下一个风口,最近非常的火,海量的数据处理、分析、挖掘和标签化,需要计算性能非常出众的计算核心,也就是计算机或服务器的CPU或者GPU,那么集成了AI计算模块的新片就是AI芯片。
AI芯片也被称为AI加速器或计算卡,即专门用于处理人工智能应用中的大量计算任务的模块(其他非计算任务仍由CPU负责)。当前,AI芯片主要分为GPU、FPGA、ASIC。
AI的许多数据处理涉及矩阵乘法和加法。大量并行工作的GPU提供了一种廉价的方法,但缺点是更高的功率。具有内置DSP模块和本地存储器的FPGA更节能,但它们通常更昂贵。AI芯片该使用什么方法原理去实现,目前仍然众说纷纭,这是新技术的特点,探索阶段百花齐放,这也与深度学习等算法模型的研发并未成熟有关,即AI的基础理论方面仍然存在很大空白。这是指导芯片如何设计的基本前提。因此,目前集中在如何更好的适应已有的数据流式处理模式进行的芯片优化设计。
技术手段方面AI市场的第一颗芯片包括现成的CPU,GPU,FPGA和DSP的各种组合。虽然新设计正在由诸如英特尔、谷歌、英伟达、高通,以及IBM等公司开发,但目前还不清楚哪家的方法会胜出。似乎至少需要一个CPU来控制这些系统,但是当流数据并行化时,就会需要各种类型的协处理器。
所谓的AI芯片,一般是指针对AI算法的ASIC(专用芯片)。
传统的CPU、GPU都可以拿来执行AI算法,但是速度慢,性能低,无法实际商用。
比如,自动驾驶需要识别道路行人红绿灯等状况,但是如果是当前的CPU去算,那么估计车翻到河里了还没发现前方是河,这是速度慢,时间就是生命。如果用GPU,的确速度要快得多,但是,功耗大,汽车的电池估计无法长时间支撑正常使用,而且,老黄家的GPU巨贵,经常单块上万,普通消费者也用不起,还经常缺货。另外,GPU因为不是专门针对AI算法开发的ASIC,所以,说到底,速度还没到极限,还有提升空间。而类似智能驾驶这样的领域,必须快!在手机终端,可以自行人脸识别、语音识别等AI应用,这个必须功耗低,所以GPUOUT!
所以,开发ASIC就成了必然。
说说,为什么需要AI芯片。
AI算法,在图像识别等领域,常用的是CNN卷积网络,语音识别、自然语言处理等领域,主要是RNN,这是两类有区别的算法。但是,他们本质上,都是矩阵或vector的乘法、加法,然后配合一些除法、指数等算法。
一个成熟的AI算法,比如YOLO-V3,就是大量的卷积、残差网络、全连接等类型的计算,本质是乘法和加法。对于YOLO-V3来说,如果确定了具体的输入图形尺寸,那么总的乘法加法计算次数是确定的。比如一万亿次。(真实的情况比这个大得多的多)
那么要快速执行一次YOLO-V3,就必须执行完一万亿次的加法乘法次数。
这个时候就来看了,比如IBM的POWER8,最先进的服务器用超标量CPU之一,4GHz,SIMD,128bit,假设是处理16bit的数据,那就是8个数,那么一个周期,最多执行8个乘加计算。一次最多执行16个操作。这还是理论上,其实是不大可能的。
那么CPU一秒钟的巅峰计算次数=16X4Gops=64Gops。
这样,可以算算CPU计算一次的时间了。
同样的,换成GPU算算,也能知道执行时间。因为对GPU内部结构不熟,所以不做具体分析。
再来说说AI芯片。比如大名鼎鼎的谷歌的TPU1.
TPU1,大约700MHz,有256X256尺寸的脉动阵列,如下图所示。一共256X256=64K个乘加单元,每个单元一次可执行一个乘法和一个加法。那就是128K个操作。(乘法算一个,加法再算一个)
另外,除了脉动阵列,还有其他模块,比如激活等,这些里面也有乘法、加法等。
所以,看看TPU1一秒钟的巅峰计算次数至少是=128KX700MHz=89600Gops=大约90Tops。
对比一下CPU与TPU1,会发现计算能力有几个数量级的差距,这就是为啥说CPU慢。
当然,以上的数据都是完全最理想的理论值,实际情况,能够达到5%吧。因为,芯片上的存储不够大,所以数据会存储在DRAM中,从DRAM取数据很慢的,所以,乘法逻辑往往要等待。另外,AI算法有许多层网络组成,必须一层一层的算,所以,在切换层的时候,乘法逻辑又是休息的,所以,诸多因素造成了实际的芯片并不能达到利润的计算峰值,而且差距还极大。
当前,我国人工智能芯片行业正处在生命周期的幼稚期。主要原因是国内人工智能芯片行业起步较晚,整体销售市场正处于快速增长阶段前夕,传统芯片的应用场景逐渐被人工智能专用芯片所取代,市场对于人工智能芯片的需求将随着云/边缘计算、智慧型手机和物联网产品一同增长,并且在这期间,国内的许多企业纷纷发布了自己的专用AI芯片。
尽管国内人工智能芯片正逐渐取代传统芯片,但是集成商或芯片企业仍在寻找新的合作模式,这样才能很好地抓住新客户的需求。
AI工作室是个好概念,理解一个新事物,从概念入手是最简单的。AI工作室能为大家提供什么样的服务能力呢?
计算能力:腾讯云已提供多项定制化的计算服务,包括结合最新GPU技术推出的多机多卡、多品类的计算实例;国内首款搭载25G网卡的云服务器;高性能异构计算基础设施——FPGA云服务器。
海量数据存储能力:存储是AI服务从1到N的原动力。腾讯云提供全存储场景服务,包括从高频、中频、近线到归档存储的产品方案,同时提供存储网关,定制化的存储方案。
关于fpga在人工智能的内容到此结束,希望对大家有所帮助。