人工智能在运动领域?人工智能现在领域

kk 0 2024-05-15

一、有哪些人工智能领域可以考取的证书

AI,也就是人工智能,并不仅仅包括机器学习。曾经,符号与逻辑被认为是人工智能实现的关键,而如今则是基于统计的机器学习占据了主导地位。最近火热的深度学习正是机器学习中的一个子项。目前可以说,学习AI主要的是学习机器学习。但是,人工智能并不等同于机器学习,这点在进入这个领域时一定要认识清楚。关于AI领域的发展历史介绍推荐看《机器学习简介》。下面一个问题是:AI的门好跨么?其实很不好跨。我们以机器学习为例。在学习过程中,你会面对大量复杂的公式,在实际项目中会面对数据的缺乏,以及艰辛的调参等。如果仅仅是因为觉得这个方向未来会“火”的话,那么这些困难会容易让人放弃。学习方法学习方法的设定简单说就是回答以下几个问题:我要学的是什么?我怎样学习?我如何去学习?这三个问题概括说就是:学习目标,学习方针与学习计划。学习目标比较清楚,就是踏入AI领域这个门。这个目标不大,因此实现起来也较为容易。“过大的目标时就是为了你日后放弃它时找到了足够的理由”。学习方针可以总结为“兴趣为先,践学结合”。简单说就是先培养兴趣,然后学习中把实践穿插进来,螺旋式提高。这种方式学习效果好,而且不容易让人放弃。有了学习方针以后,就可以制定学习计划,也称为学习路线。下面就是学习路线的介绍。学习路线这个学习路线是这样设计的:首先了解这个领域,建立起全面的视野,培养起充足的兴趣,然后开始学习机器学习的基础,这里选择一门由浅入深的课程来学习,课程最好有足够的实验能够进行实战。基础打下后,对机器学习已经有了充足的了解,可以用机器学习来解决一个实际的问题。这时还是可以把机器学习方法当作一个黑盒子来处理的。实战经验积累以后,可以考虑继续进行学习。这时候有两个选择,深度学习或者继续机器学习。深度学习是目前最火热的机器学习方向,其中一些方法已经跟传统的机器学习不太一样,因此可以单独学习。除了深度学习以外,机器学习还包括统计学习,集成学习等实用方法。如果条件足够,可以同时学习两者,一些规律对两者是共通的。学习完后,你已经具备了较强的知识储备,可以进入较难的实战。这时候有两个选择,工业界的可以选择看开源项目,以改代码为目的来读代码;学术界的可以看特定领域的论文,为解决问题而想发论文。无论哪者,都需要知识过硬,以及较强的编码能力,因此很能考察和锻炼水平。经过这个阶段以后,可以说是踏入AI领域的门了。“师傅领进门,修行在个人”。之后的路就要自己走了。

二、人工智能融合了哪些学科的知识

1、人机对话智能交互技术;这项技术能让人类做到真正与机器智能的对话交流,机器人不仅能理解用户的问题并给出精准答案,还能在信息不全的情况下主动引导完成会话。当前这一块做得比较成熟的谷歌与Facebook。

2.液态金属控制技术;这个大家也许能脑补出终结者里面的液态机器人。这项技术的核心就是,通过控制驱动电磁场外部环境,对液态金属材料进行外观特征、运动状态的准确控制。

3.脑机接口技术;它能使人类用意念控制机器。是不是已经有点科幻的味道出来了。此技术通过对神经系统电活动和特征信号的收集、识别及转化,使人脑发出的指令能够直接传递给指定的机器终端,在人与机器人的交流沟通领域有重大创新意义。

4.敏感触觉技术;简单来说就赋予机器人可以感觉的皮肤。该技术是采用基于电学和微粒子触觉技术的新型触觉传感器,能让机器人对物体的外形、质地和硬度更加敏感,最终胜任医疗、勘探等一系列复杂工作。

5.柔性机器人技术;通俗来讲就是软体机器人,最大的特点就是采用柔韧性材料制造,可以最大范围内任意改变自身形状,能到达很多一般技术无法企及的地方,实现检测。

上一篇: 人工智能领域手势识别 人工智能三个研究领域
下一篇: 人工智能领域有 人工智能领域
猜你喜欢