人工智能领域选题?人工智能领域
15
2024-06-10
1、对于这个问题,不能笼统地回答哪个比较好,因为站在不同的视角和提问者自身的情况,会有不同的答案。
2、从发展前景上看,建议选择人工智能
3、人工智能是目前最火爆、也是投资者最看好的方向。
4、人工智能的概念诞生于20世纪50年代,标志性事件是达特矛斯会议。
5、该会议由笔者最喜欢的Lisp编程语言之父约翰·麦卡锡等人于1956年8月31日发起,旨在召集志同道合的人共同讨论“人工智能”(此定义正是在那时提出的)。
6、会议持续了一个月,基本上以大范围的集思广益为主。这催生了后来人所共知的人工智能革命。
7、人工智能的发展经历过两次低潮,直到2016年,再次被世人推向了高潮:
8、谷歌旗下的DeepMind开发出AlphaGo,击败了人类围棋高手李世石,标志着人工智能突破了人们的常规认知:机器智能无法胜任人类的抽象思维和精妙的直觉——围棋是所有棋类运动中规则最简单,但是技巧和取胜难度最高的一个。
9、传统的围棋高手,都需要经过长期的训练和对大局的直觉把控(也就是很多时候讲究的“形状”)。
10、因为棋盘上一共有361个下子点,每一步根据棋盘上的当前形势,可能的落子位置的排列组合呈现“几何爆炸”。
11、自此以后,依托于大数据等算力的革命性进步,人工智能被资本和企业追逐,大量应用于自动驾驶、人脸识别、语音识别、推荐引擎等领域。
12、人工智能现在已经渗透到各行各业,2020年全球人工智能产业规模1565亿美元,增长率是12%,我国的产业规模大概是3100亿元,同比增长了15%。
13、根据国际数据公司(IDC)上个月发布的《IDCFutureScape:全球人工智能(AI)市场2021预测——中国启示》报告:
14、预测1:到2023年,在金融、医疗、政府和其他受监管的公共部门中,超过15%的以消费者为中心的AI决策系统将引入解释其分析和决策过程的相关规定。
15、预测2:到2021年,超过50%的组织将在呼入电话处理环境中增加AI功能。
16、预测3:到2024年,45%的重复工作任务将通过使用由AI、机器人和机器人流程自动化(RPA)提供支持的“数字员工”实现自动化或增强。
17、预测4:到2023年,使用自动机器学习(AutoML)技术封装的、从数据准备到模型部署的端到端机器学习平台的数据分析师和数据科学家的数量将增加2倍。
18、预测5:到2024年,自动化运维(AIOps)将成为IT运营的新常态,至少有50%的大型企业将采用自动化运维解决方案来自动化主要IT系统和服务管理过程。
19、预测6:到2025年,10%的人工智能解决方案将更接近于通用人工智能(AGI)——利用神经符号技术将深度学习与符号方法结合起来,以创造出更可靠的、近乎人类的决策方式。
20、预测7:到2021年,至少有65%的中国1000强企业将利用自然语言处理(NLP)、机器学习(ML)和深度学习(DL)等AI工具,赋能60%在客户体验、安全、运营管理和采购等业务领域的用例。
21、预测8:到2024年,超过30%的中国1000强企业会将AI工作负载更均匀地部署在端侧,边缘侧以及云端,这些工作负载将由人工智能软件平台提供商统一管理,使AI基础设施“隐形化”。
22、预测9:到2023年,30%的企业将在边缘侧运行不同的分析和AI模型。其中30%的边缘AI应用将由异构加速方案加速。
23、预测10:到2022年,80%的中国1000强企业将投资内部学习平台和第三方培训服务,以满足AI采用带来的新技能需求和工作方式转变。
24、面向未来,投资自身的话,人工智能将是你的优质选择之一——因为汹涌的产业潜力和市场空间将带给你巨大的机会。
25、从打基础角度看,建议选择计算机科学技术
26、尽管上述人工智的前景非常美妙,但是其数字底座仍然脱离不了计算机技术。无论是人工智能用到的大数据系统,还是联接与计算使用的芯片、网络技术,其核心都是信息技术,也就是广义的计算机科学技术。
27、计算机科学与技术包括了硬件(计算机组成原理、微机接口、IC设计与制造等)、软件(操作系统、编译器、数据库、应用软件、互联网App等)、算法、体系结构的方方面面。
28、我们国家现在亟需大量的芯片人才和系统软件人才,如果做一名有抱负的年轻人,完全可以投身这个充满挑战和满满荣誉感的行业。
29、从就业选择面角度看,建议选择软件工程
30、专业课程涵盖:程序设计语言、数据结构、离散数学、操作系统、编译技术、软件工程概论、统一建模语言、软件体系结构、软件需求、软件项目管理。
31、该专业除了学习公共基础课外,还将系统学习离散数学、数据结构、算法分析、面向对象程序设计、现代操作系统、数据库原理与实现技术、编译原理、软件工程、软件项目管理、计算机安全等课程,根据学生的兴趣还可以选修一些其它选修课。
32、软件工程相对于计算机科学与技术,更加聚焦软件方面,并且对标企业的工业化、商用需求。所以它天然对就业有优势。
33、根据上个月智联招聘发布关于《2020新基建产业发展报告》显示,新基建核心技术人才缺口预计达417万人,其中软件开发人才缺口最大。从岗位来看,系统架构设计师月薪高达24277元,整体平均月薪10299元。学历方面,高素质人才成为将来企业招聘的重点对象。
34、对于一些互联网和高科技大厂,薪酬更高。
35、从差异化竞争优势看,建议选择网络安全
36、随着互联网与传统行业的结合,数字化转型已经成为正在发生着的历史必然。井喷的互联需求,将导致大量的潜在信息安全隐患。
37、除此之外,5G、区块链、新基建、物联网等场景的兴起,对实时性的数据安全要求更为苛刻。在这样的产业趋势下,网络安全的就业岗位势必会迎来下一轮增长。
38、大量学生与求职者的第一选择都是人工智能、大数据和软件开发,所以这些岗位对求职者的门槛要求也水涨船高。在这样的情形下,网络安全其实是一个可以发挥自身差异化竞争优势的选择。
39、从专业课安排上讲,就总体上而言,信息安全和其他计算机学院的专业没什么区别,不过在一些课程的必修限制上不同。而且从课程内容上而言,那些课程也和一般人了解的"黑客"这方面相去甚远。"黑客"技术不在大学的教授范围之内,不过老师在讲计算机网络、网络对抗与防御这两门课的时候会涉及到一些攻击技术的原理。实际想获取这方面的知识,自己需要上专业论坛、融入圈子。
谷歌旗下实际上有两家互相独立的人工智能实验室,谷歌人工智能实验室负责谷歌自身产品相关的AI产品开发,大名鼎鼎的第二代人工智能系统TensorFlow就是在这里诞生的。
DeepMind是一家英国的人工智能公司,由人工智能研究者兼神经科学家DemisHassabis等人联合创立,2014年被谷歌收购。前段时间举世闻名的AlphaGo就是这家公司的成果。现在他们已经教会了计算机玩49种不同的电子游戏。
微软拥有自己的移动操作系统、翻译、地图、搜索等业务,其在人工智能上的研究和应用轨迹同谷歌十分相似。其亮点在于旗下分别定为智能助手和情感交互的小冰和小娜,目前小娜和小冰的对话水平已经属于语音助手界的顶级水平。
艾伦人工智能研究院是由微软的联合创始人PaulAllen建立的,致力于对AI的研究。目前主要专注于四个项目的研究:名为Aristo的机器阅读与推理程序,SemanticScholar的语义理解搜索程序,Euclid的自然语言理解程序,和Plato的计算机视觉程序。
Facebook现在可不单纯是一家社交网站了,其在技术方面的研究同样很前沿。Facebook需要由机器学习来对用户在NewsFeeds中看到的内容等大量信息进行自动管理。目前Facebook在AI领域的应用主要有语言翻译、强大的个人数字助理“M”和图像、视频分析程序等。
丰田实验室近期将收购发明双足机器人Atlas的波士顿动力。这个实验室既关注无人驾驶领域也在机器人领域有了相当大的进展。丰田实验室的主要制造成果有丰田生活辅助机器人(HSR),丰田KiroboMini机器人等。
Uber在去年也建立了自己的研发中心,希望在自动驾驶领域有所突破。5月底Uber的自动驾驶汽车刚刚获准进行无人驾驶汽车的实验。Uber先进科技中心的很多研究者是卡内基梅隆大学挖来的著名学者和研究人员。
亚马逊并没有为人工智能单独成立一个实验室,但其云服务部门AWS已经对云服务有了深刻的应用,亚马逊启用了一个叫“亚马逊机器学习”(AmazonMachineLearning)的服务,用于数据的处理和存储,来同微软和谷歌竞争,亚马逊Kiva机器人则可以提高仓储中心的工作效率,近期旗下的AlexaInternet还推出了一款叫Echo的智能音响兼语音助手。
IBM最近的超级电脑Watson安装有IBM研发的“语气分析工具”(ToneAnalyzer)。这一工具可以对人类的书写文字进行智能识别,识别出其中的高兴、悲伤等情绪。
现在,本田已有四家技术研发中心,研究领域涉及计算科学、计算机视觉、人工智能、机器人等多个方面。硅谷研发中心主要关注于车联网、大数据、语音识别等领域。
1、1,因为阿兰·图灵是20世纪最重要的计算机科学家之一,他提出了图灵机的概念,并在理论计算机科学和人工智能领域做出了突出贡献,被誉为。
2、2,阿兰·图灵的思想和理论为人工智能的发展提供了基础,他的著作《计算机器与智能》对于推动人工智能研究起到了重要的影响。
3、3,除了在人工智能领域,图灵还在密码学、计算机科学和数学逻辑等领域做出了突出贡献,他的工作对现代计算机科学的发展产生了深远的影响。