人工智能领域选题?人工智能领域
15
2024-06-10
当前,人工智能在医疗健康领域中的应用已经非常广泛,从应用场景来看,主要分成了虚拟助理、医学影像、药物挖掘、营养学等四大方面。随着当下语音识别、图像识别等技术的逐渐提升,基于这些基础技术的泛人工智能医疗产业也走向成熟,进而推动了整个智能医疗产业链的快速发展和一大批专业企业的诞生。
一,虚拟助理:人类医师的得力助手还是替代者?
在医疗领域,虚拟助理可以根据和用户的交谈,智能化地通过病情描述判断病因。因此虚拟助理主要分成两类,一类是包括Siri等的通用型虚拟助理,另一类是专注医疗健康类的专用虚拟助理。通用类虚拟助理上市时间早,资本支持度高,数据规模大。而医健类虚拟助理的专业属性强、监管风险高。
虚拟助理是目前较受资本青睐的人工智能医疗健康细分领域,目前在国外用户所熟知的医健虚拟助理是BabylonHealth,而国内在虚拟助手上,也有大数医达和康夫子崭露头角。
1.人工智能+医学影像
人工智能在医学影像领域目前的应用方向主要有三类,即疾病筛查、病灶勾画、脏器三维成像,涉及脑、眼睛、乳腺、食管、肺、心脏等多个人体部位。结合目前循环系统疾病的特点,预防意义重于治疗,人工智能心血管影像能够有效提高循环系统疾病早筛及预防情况。
2.人工智能+医院管理
因为医疗事务繁重、临床管理和医院管理的难度大、对新技术接受度高等因素,医院在完成第一阶段的人工智能体系建设后,尤其是针对大型三级医院,应当大力发展人工智能医院管理。人工智能在医院管理应用上主要有两个方向,分别是优化医疗资源配置和弥补医院管理漏洞。
3.人工智能+疾病诊断和预测
现代医学是从人们的各种生化、影像的检查结果中,去诊断是否患病。但如果要实现疾病的未来发展预测,往往力不从心。人工智能能够参与疾病的筛查和预测,需要从行为、影像、生化等检查结果中进行判断。
4.人工智能+医学研究
人工智能的切入主要是利用机器学习和自然语言处理技术自动抓取病历中的临床变量,融汇多源异构的医疗数据,结构化病历、文献,最后生成标准化的数据库。在具体的人工智能+医学研究的相关落地产品线中,报告认为应重点点关注医疗翻译与医疗知识图谱领域。
人工智能()的用途范围非常广泛。它可以应用于自动驾驶汽车、智能助理、语音识别、机器翻译、医疗诊断、金融风险分析、智能家居、工业自动化等领域。
AI还可以用于数据分析、预测模型、图像识别、自然语言处理、智能推荐系统等任务。通过机器学习和深度学习技术,AI能够处理大量数据并从中学习,提供更准确、高效的解决方案,为各行各业带来更多创新和便利。
一是制订独立设计的医疗机构服务标准和管理规范,吸引各方资金投资卫生健康领域。
二是推动医疗服务与养老、旅游、互联网、体育、食品行业的融合。
三是推进健康养老,开展健康旅游示范基地建设,倡导健康休闲,发展健康食品。
四是深化互联网+健康医疗服务,促进和规范健康医疗大数据应用,推动人工智能在健康领域的发展和运用。
人工智能在医疗健康领域中的应用已经非常广泛,从应用场景来看,主要分成了虚拟助理、医学影像、药物挖掘、营养学等四大方面。
随着当下语音识别、图像识别等技术的逐渐提升,基于这些基础技术的泛人工智能医疗产业也走向成熟,进而推动了整个智能医疗产业链的快速发展和一大批专业企业的诞生。