人工智能领域选题?人工智能领域
15
2024-06-10
1、传统的工业机器人仅是以机器人代替部分繁琐的人工劳动,成为人类体力的延伸,但机器人的智能程度还不够,无法完成一些比较精细的工作。但随着科学技术的发展和工业生产的需要,人们也开始研究如何让机器人去代替部分脑力劳动,使其具有更高的智慧与能力,而AI技术的发展则弥补了这一短板。
2、AI技术的加入,使得工业机器人能以与人类智能相似的方式做出反应,赋予了机器人新的活力,让它不仅能代替人类大部分的体力劳动,也可以在程序设定的基础上代替部分的脑力劳动,提高生产效率,降低工厂生产成本。
3、由于人眼无法看清快速移动的目标,对微小目标分辨能力弱,而且人眼疲劳后漏检率会提高,这些都使得人工检测费时费力。而智能缺陷检测机器人则克服了这些困难,高速工业相机能够在动态检测的情况下极大降低误报率,还可根据产品检测需求调整检测精度,提高检测效率。同时可配合自动化生产线,实现自动检测、自动处理,降低次品率,减少人工成本,使得生产效率显著提升。
4、对于工厂来说,分拣速度慢意味着生产出的产品会在产线上积压,造成生产线流转不顺畅,拉低生产效率。目前人工分拣速度慢,尤其是体积小、颜色形状多的产品更是分拣难度大,很容易造成分拣失误,但如果使用智能分拣机器人则可以大大提高分拣速度。
5、智能分拣机器人可以通过摄像头对分拣物品进行识别,再通过分析得出该物品应放置的区域,最后通过机械臂或产线配合将产品送至相应的位置。该机器人的在线识别速度一般都高于生产速度,分拣失误率低,不易造成产品在产线上积压。
6、传统的产品尺寸检测由于人员使用量具熟练程度的不同,量具使用不熟练或是人员疲劳会造成检测速度变慢,延缓生产进度,而且人工测量误差较大。但智能尺寸检测机器人可以24小时持续检测,检测速度快,测量误差小。
7、视觉机器人想要成功接收各项指令并完成相应的动作,也像人一样需要大脑的调配。智能装备研发的视觉引导系统就是这样一个“大脑”,它通过自主软件控制系统来下达指令,工业相机进行目标产品信息捕捉,再通过多轴机械臂进行操作,整个过程流畅自然。
8、01管桩自动领域:管桩自动装配机器人
9、该设备用于水泥管桩行业的头尾板自动装配
10、采用视觉获取笼筋墩头的空间角度位置,配合四轴矫正专机完成墩头的自动撑开,最后通过机械臂实现头尾板的装配
11、02检测领域:检测中心检测机器人
12、检测系统由六轴机器人、自动上料装置、自动扫码装置、测径仪、测宽仪、三点测弯机构、拉力机、安全防护系统等组成。
13、机器人系统实现样品检测自动化、无人化、数据自动上传与处理功能,提了检测准确性、真实性,降低人工成本、提高检测效率。
从机器翻译到语音、图像识别,再到无人驾驶,人工智能(ArtificialIntelligence,AI)技术正在深入影响着我们的工作和生活。人工智能被视为与计算机、互联网相提并论的重大技术创新,已成为IT企业发展的重要目标,也是国际竞争的新焦点。聚焦GIS领域,人工智能对GIS技术的发展和应用产生了哪些巨大影响,如何驱动GIS未来发展?以下为大家分享GIS基础软件“BitCC”五大技术体系之人工智能GIS技术体系。
在AI与GIS融合的道路上,超图软件不断进行技术创新和探索,2018年推出AIGIS技术,2019年进一步构建了AIGIS技术体系:
1、GeoAI:融合AI的空间分析与处理;
2、AIforGIS:AI赋能GIS,即基于AI技术,增强和优化GIS软件功能;
3、GISforAI:GIS赋能AI,即基于GIS技术,将AI分析结果进行进一步处理分析与空间可视化展现。
基于统计学、机器学习和深度学习等人工智能基础理论与算法,面向地理空间领域问题,超图软件创新实现了一系列人工智能GIS功能,使其服务于GIS空间数据处理、分析、挖掘与综合建模。SuperMapGIS10i产品以丰富的空间统计功能为基础,主要在空间机器学习、空间深度学习两个方面深化与丰富GeoAI功能,支持人工智能GIS应用。
机器学习是现阶段人工智能的研究核心,可以让计算机实现自动“学习”。机器学习领域的三类典型问题包括聚类、分类和回归,因此主要面向这三类基本问题展开空间机器学习的研究。
目前提供的空间机器学习算子包括空间热点分析、空间密度聚类、基于森林的分类与回归分析、广义线性回归分析,帮助解决商业热点区域探查、住宅小区集聚分析、动植物适生区域识别、自然灾害易发区推测、城市不同区域房价预测等自然与社会问题。为了支持空间大数据计算,还将机器学习算法与分布式计算进行有效结合,大幅度提升了空间机器学习的性能。
深度学习是机器学习技术的一个分支,可以让计算机模拟人脑的机制进行学习。由于深度学习技术在计算机视觉、图像理解方面已展现较好应用效果,因此,超图将其应用于遥感影像分析领域,可提高影像处理效率及准确性。SuperMapGIS10i新增了基于深度学习的影像数据检测、分类、提取等算法,包括目标检测、二元分类、地物分类和场景分类等,可用于影像建筑物、道路提取、土地利用分类、局部气候分区,可广泛应用于城市规划、气象建模等领域。
图3基于空间深度学习的影像建筑物提取
由于地理信息应用的多样性,当基础模型不能完全满足用户需求时,便可以用提供的流程工具来训练自己的模型。
机器学习的一般应用步骤是选择模型—训练模型—使用模型,因此相应的GeoAI功能使用需要经历从数据准备到模型应用的完整流程,如下图所示。而SuperMapGIS10i的组件、桌面、服务器产品分别都提供了支持数据准备、模型构建、模型应用的人工智能GIS工作流程工具,方便软件使用者根据自己的数据与应用场景训练和使用自有模型。
AIforGIS,即基于AI技术增强和优化GIS软件功能。比如将AI技术应用到一些GIS传统业务中,实现GIS软件功能的智能进化。
目前SuperMap主要提供四个方面的功能:AI属性采集、AI测图、AI配图和AI交互。
AI属性采集功能可以帮助用户进行视频图像等多类目标的AI识别,例如高效采集违章停车、小广告、井盖等数据;AI测图功能提供更低成本、更为便捷的室内测图服务;AI配图功能为用户免去手工配图的繁琐流程,通过简单操作,进行风格迁移,就可以得到相对满意的地图风格;AI交互功能更是包括使用语音操控、隔空手势等丰富的交互方式,玩转GIS功能。
人工智能在不断发展的道路上,也需要不断吸收融合其他的技术,如GIS。GIS可以将更多空间可视化和空间分析能力赋予AI,将AI分析结果在GIS软件中进行进一步处理与分析。
GIS可以将空间可视化赋能AI,例如交通流量监控、城市管理部件与案件等地图可视化应用,可为决策者提供更直观的信息表达形式;GIS还可以将空间分析赋能AI,例如可进行地理围栏实时告警,车辆行驶路线追踪等,携手AI为用户提供更大价值。
未来,超图软件会持续进行AI技术与GIS技术的深度融合,增加更多的方法和工具,基于AI技术促进GIS业务的深化应用。一方面,AIGIS会持续与深度学习、机器学习等方面的研究相结合,使其逐渐走向成熟;另一方面,AIGIS也会与AutoML、AIPaaS等为代表的AI新技术不断碰撞融合。随着人工智能技术不断蓬勃发展及与GIS的结合不断深入,未来的AIGIS也将从弱人工智能走向通用人工智能。我们将Gartner2019AI光环曲线中的研究方向划分为,AIGIS初步探索涉及的内容,以及AIGIS未来探索的内容两个部分。
注:原文标题《人工智能GIS技术体系来袭》,刊登于《超图通讯》2019年12月刊,作者:超图研究院大数据与AI研发中心郑美玲卢浩
1、例如在集装箱检验检疫熏蒸处理上,基于智能移动机器人平台能够取代人力完成溴甲烷、磷化氢、乙酸乙酯等熏蒸剂的投放、浓度检测、环境残留检测等工作,把作业人员从有毒有害危险及恶劣的环境中解放出来。
2、在人工智能与检验检测行业的结合上,人们利用VR、AR、MR等技术形成全新的检验检测培训认证体系。基于人工智能全新模式的检验检测培训认证模式将为检验检测行业带来的发展契机,在观察性学习、操作性学习、社会性学习和研究性学习中都具有广阔的应用前景。广阔的检验检测市场前景更凸显了引领行业走向智能化的必要性,通过智能协作机器人操作提高检测准确度和效率,借助智能化延伸第三方检测的价值链条,为相关行业决策提供第一手生产资料,都将有力促进检验行业的变革和崛起。在未来检验检测互联网大数据时代,要想成为时代的弄潮儿,必须打造“人无我有、领先一步,人有我专、技高一筹”的核心竞争力,才能立于不败之地。
1、人工智能技术在自动化前沿领域的最大应用价值就是可以节省大量的人力资源,在电气工程领域的应用就有很多方面,诸如在电气工程自动化领域,通过对工程设备加入自动控制装置,通过对电力系统的局部控制,有效的保护电路。
2、在故障检修作业中加入人工智能技术,通过人工智能的模糊算法对发生故障的设备进行排查。
3、通过人工智能技术对电气系统进行仿真模拟,对各项参数进行对比检测,利用机器学习算法对比参数的离散值,确定正常参数范围和故障范围,再根据故障参数的来源确定需要维修的范围和具体诊断报告。
4、这种人工智能技术的引入大大提高了电气工程领域及其自动化领域的发展速度。