人工智能领域选题?人工智能领域
15
2024-06-10
1.知识表示和理解:知识图谱提供了一种结构化的方式来表示和理解知识,将实体、关系和属性等知识元素以图的形式组织起来,使其易于计算机处理和理解。
2.知识查询和检索:知识图谱可以支持快速准确的知识查询和检索,用户可以通过关键词、实体名称、关系等方式查询和检索所需的知识。
3.知识推理和推断:知识图谱可以支持基于已有知识的推理和推断,帮助用户发现隐藏的知识和关系。
4.知识融合和集成:知识图谱可以将不同来源的知识进行融合和集成,消除知识的歧义性和不一致性,形成一个统一的知识体系。
5.智能问答和交互:知识图谱可以应用于智能问答和交互系统,根据用户的问题和语境,快速检索和推理出答案和建议。
总之,知识图谱是一种重要的知识表示和处理技术,可以帮助人们更好地理解、查询、推理和利用知识,提高知识的利用效率和价值。
KINeSIS(KnowledgeINferenceandSemanticIntegrationSystem)是基于对知识图谱结构和关系的推理技术框架,用于建立、融合、推理和可解读的知识图谱。KINeSIS使用统一的语义模型和查询语言,实现了在不同知识来源之间进行自动融合,以及基于融合数据的规则和语义推理。
6、计算机视觉。1、机器学习机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能
人工智能技术主要有图像技术、人体与人脸识别、视频技术、语音技术、自然语言处理、知识图谱、机器学习和深度学习等。随着人工智能技术在医药、金融、零售、制造、互联网等行业的广泛落地应用,近年来相关专利申请数量也大幅增加。
1、人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
2、虚拟现实/增强现实从技术特征角度。按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。