人工智能领域选题?人工智能领域
15
2024-06-10
自动化属于基础学科,人工智能技术是其中一个分支。
自动化通俗的白话定义是最高级的机械化和电气化,即是机器、设备和仪器能全部自动地按规定的要求和既定的程序进行生产,人只需要确定控制的要求和程序,不用直接操作。
人工智能即是对人的意识、思维的信息过程的模拟,即按照人的思维进行自动操作。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
从学科方向上而言,包含三大类,分别是:
1、工业过程控制方向:以自动控制、计算机技术为支撑,针对实际工业生产过程实现自动控制,由信号检测与变换、过程控制、计算机控制系统、智能控制和现场总路线控制技术等组成方向主干课。
2.、电气工程方向:使学生能够从事电力系统自动化、工厂企业、楼宇系统的供电和电气控制、监控等领域的设计开发、维护和管理工作。由电气控制技术、运动控制、PLC应用技术、供电技术、电力系统继电保护等组成方向主干课。
3.、嵌入系统方向:注重对嵌入式系统设计与软件设计能力的培养,理论结合实践,通过课堂教学、实验等多种形式的学习,培养嵌入式系统方向的专业人才;由嵌入式系统设计、嵌入式实时操作系统、DSP技术、先进显示技术、控制电机等组成方向主干课。
从自动基础学科涉及的专业影响而言:
从深度来看--以工业生产为例,小到一个普通的设备电机,大到企业的整个加工、制造系统乃至企业的整个生产过程都属于自动化。
从广度来看--涉及第二产业工业自动化、第一产业农业自动化、第三产业服务自动化(如办公自动化、楼宇自动化、商务自动化、交通自动化等等),涉及的系统可有人造系统(如机器系统、交通系统、电力系统、军事系统)和自然系统(如生命系统、生态系统),涉及的过程有生产过程、管理过程、决策过程等等。
“人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。
人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
也有一种说法,将人工智能归结到计算机技术,认为人工智能是计算机技术的一种衍生方向。
AI,也就是人工智能,并不仅仅包括机器学习。曾经,符号与逻辑被认为是人工智能实现的关键,而如今则是基于统计的机器学习占据了主导地位。最近火热的深度学习正是机器学习中的一个子项。目前可以说,学习AI主要的是学习机器学习。但是,人工智能并不等同于机器学习,这点在进入这个领域时一定要认识清楚。关于AI领域的发展历史介绍推荐看《机器学习简介》。下面一个问题是:AI的门好跨么?其实很不好跨。我们以机器学习为例。在学习过程中,你会面对大量复杂的公式,在实际项目中会面对数据的缺乏,以及艰辛的调参等。如果仅仅是因为觉得这个方向未来会“火”的话,那么这些困难会容易让人放弃。学习方法学习方法的设定简单说就是回答以下几个问题:我要学的是什么?我怎样学习?我如何去学习?这三个问题概括说就是:学习目标,学习方针与学习计划。学习目标比较清楚,就是踏入AI领域这个门。这个目标不大,因此实现起来也较为容易。“过大的目标时就是为了你日后放弃它时找到了足够的理由”。学习方针可以总结为“兴趣为先,践学结合”。简单说就是先培养兴趣,然后学习中把实践穿插进来,螺旋式提高。这种方式学习效果好,而且不容易让人放弃。有了学习方针以后,就可以制定学习计划,也称为学习路线。下面就是学习路线的介绍。学习路线这个学习路线是这样设计的:首先了解这个领域,建立起全面的视野,培养起充足的兴趣,然后开始学习机器学习的基础,这里选择一门由浅入深的课程来学习,课程最好有足够的实验能够进行实战。基础打下后,对机器学习已经有了充足的了解,可以用机器学习来解决一个实际的问题。这时还是可以把机器学习方法当作一个黑盒子来处理的。实战经验积累以后,可以考虑继续进行学习。这时候有两个选择,深度学习或者继续机器学习。深度学习是目前最火热的机器学习方向,其中一些方法已经跟传统的机器学习不太一样,因此可以单独学习。除了深度学习以外,机器学习还包括统计学习,集成学习等实用方法。如果条件足够,可以同时学习两者,一些规律对两者是共通的。学习完后,你已经具备了较强的知识储备,可以进入较难的实战。这时候有两个选择,工业界的可以选择看开源项目,以改代码为目的来读代码;学术界的可以看特定领域的论文,为解决问题而想发论文。无论哪者,都需要知识过硬,以及较强的编码能力,因此很能考察和锻炼水平。经过这个阶段以后,可以说是踏入AI领域的门了。“师傅领进门,修行在个人”。之后的路就要自己走了。