人工智能领域选题?人工智能领域
15
2024-06-10
我就是从医生转到人工智能领域,兴趣是最好的老师,如果你是真心喜欢的话。当然,从事人工智能方向,离不开扎实的数学基础。需要学习的东西很多,从微积分,离散数学,线性代数到概率论和数理统计,然后是,各种机器学习的算法,模型,神经网络和深度学习的各种算法。
人工智能的本质是数学和算法,所以把数学学好的话,人工智能就可以慢慢入门了。当然还要不断的去学习实践,查看前沿的学术论文和文章,最终和你的医学知识和临床经验结合起来。总之这条道路非常艰难,想想我们学医的,所学到的那点高等数学的皮毛,你需要有很多的知识要补,慢慢来吧。
无人驾驶是人工智能的一种。人工智能基本特点是大数据处理和机器学习功能。
无人驾驶需要实时采集周边路况信息,并进行处理,具备大数据处理的特点。同时,需要自主进行路径规划和路况学习,属于机器学习一类。
所以无人驾驶是属于人工智能的。
人工智能应用的非常的广范,而且还在不断的创新,在工业,农业,科学技术,航空航天都在广范的应用,所以说人工智能很有前途
智能工程就业前景很好
人工智能,现在已被国家列入发展规划,国家提出了人工智能三步走的发展战略,现工智能已经有了国家战略的背景支持。因此,在今后的发展当中,肯定是会越来越火热。从科研院所到商业巨头和企业,各行各业都在开发引进人工智能,导致人工智能领域的缺口非常大。而且它作为以计算机技术为基础的高端技术,工资是绝对不会低的,不仅不会低,是非常高的。
谢谢邀请!
软件工程师转行做人工智能是一个不错的选择,但是要根据自身的知识结构进行相应的准备。对于研发级软件工程师(研发级程序员)来说,转行做人工智能是相对比较容易的,因为研发级工程师往往都有扎实的算法基础。对于应用级软件工程师(应用级程序员)来说,转行做人工智能需要一个系统的准备(学习)过程。
人工智能目前的研究方向比较多,比如自然语言处理、机器学习以及计算机视觉都是不错的研究方向,下面就以机器学习为例,说一下作为应用级软件工程师来说,都应该做好哪些准备。
首先,需要系统的学习一下算法知识。机器学习的研发是以算法为核心进行展开的,所以要有一个扎实的算法基础。这个过程需要了解一些比较经典的算法设计过程,逐步培养起解决问题的思路。这部分的学习内容包括随机算法、堆排序算法、快排、计数排序、贪心算法、核算法、势能法、图算法、多线程算法、数论算法和近似算法等,在学习算法的过程中也会连带着把数据结构一并学习一下,因为算法和数据结构本就不分家。
其次,了解机器学习的实现步骤。机器学习的流程包括数据收集、数据整理、算法设计、算法实现、验证算法和应用算法,数据收集是机器学习的第一步,目前可以用于机器学习的公共数据集并不少,对于实验来说已经够用了。接下来就是了解常见的机器学习算法,目前比较常见的机器学习算法包括NB、k-mean、kNN、SVM、Apriori、EM、PageRank、CART等算法,对于有算法基础的人来说,这些算法的学习并不困难。
最后,选择一门编程语言来实现这些算法并对其进行验证。对于软件工程师来说,这个步骤还是相对比较轻松的,目前使用Python做机器学习的算法实现是一个比较常见的做法。
人工智能是我的主要研究方向之一,目前我也在带相关方向的研究生,我会陆续在头条写一些关于人工智能方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有人工智能方面的问题,也可以咨询我,谢谢!