人工智能领域选题?人工智能领域
15
2024-06-10
大家好,今天小编来为大家解答人工智能运用场景这个问题,人工智能运用场景举例很多人还不知道,现在让我们一起来看看吧!
本文目录
作为一名科研教育工作者,我来回答一下这个问题。
首先,Python语言是一门比较典型的全场景编程语言,在Web开发、嵌入式开发、大数据和人工智能等领域都有比较广泛的应用,由于大数据和人工智能在近几年得到了较为快速的发展,所以Python语言的上升趋势也比较明显,相信随着大数据、人工智能等技术平台逐渐开始落地应用,Python语言的行业应用边界会不断得到拓展。
从技术体系结构来看,当前Python不仅可以作为平台开发工具,也可以作为场景开发工具。目前有不少大数据平台和人工智能平台都是采用Python开发的,包括一些开源平台,所以Python也是研发级程序员比较常用的编程语言之一。
在工业互联网逐渐开始落地应用的大背景下,人工智能平台也将逐渐开始走进生产场景中,Python作为一个重要的场景开发语言,在自然语言处理、计算机视觉相关领域会有大量的应用场景,而这些场景与行业的结合会逐渐紧密,不仅包括传统的金融、经济、统计等领域,传统制造业也有大量的应用场景。
与Java语言主要应用在IT互联网行业不同,Python语言在传统行业领域的应用也非常普遍,这一点随着云计算平台的落地应用,已经得到了较为明显的体现,相信在云计算逐渐向全栈云和智能云方向发展的过程中,Python语言的资源整合能力也会有所提升,而且由于Python语言比较简单易学,所以大量的职场人也都会开始学习并运用Python语言。
最后,Python语言本身的应用场景依然在不断扩展当中,相信在工业互联网时代,Python语言随着人工智能平台的落地应用,会逐渐得到普及。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!
医疗行业是人工智能应用最早,也是令人类最为受益的一个应用领域,主要在以下几个方面:医疗影像分析、病理分析诊断、医疗手术、药物研发、患者关怀等。为此,许多技术公司在这方面投入了大量的研究,使得人工智能技术进入世界各地的医疗体系。
比如,在医学领域,早在2013年,美国一个医疗机构曾借助IBMWatson来帮助阅读和分析医学文献——仅仅几个星期的时间,就从2300万份候选文献中选出了7万篇相关文章,并从中准确找到了7种可修改P53的蛋白质(P53是与很多癌症有关的一种重要蛋白质)。而在使用Watson之前,这种发现结果通常需要整个生命科学行业的顶级医生花7年时间来完成!现如今,IBMWatson已经可以做到在10分钟内阅读和剖析20,000,000份医学文献、论文和病理。
此外,据了解借助于计算机视觉技术,Watson只靠图片就能准确诊断患者是否患有黑色素瘤。目前,其对皮肤癌诊断的正确率高达了97%,已经超出了专家的平均诊断水平(85%)。
这里再列举几个其它案例:
1.谷歌AI可以通过眼部扫描预测心脏疾病风险
日前,谷歌和同属Alphabet集团的VerilyLifeSciences公司共同进行了一项研究,通过深度学习算法分析个体的视网膜图像从而准确预测心脏病。
该算法可以通过对视网膜眼底照片的识别和分析,判断个体是否吸烟、血压、年龄、性别、是否曾经有过心脏病史,甚至是种族,这些与心血管疾病相关的危险因素。
据了解,该算法的训练数据用来自于284,335名患者,包括来自英国Biobank数据库的48101名患者和来自EyePACS数据库的236244名患者。不仅能够预测心血管疾病的风险,还能预测发作时间。
2.IDx公司用21年研发了能预诊糖尿病患者失明的AI系统
最近,美国IDx公司宣布,其创始人MichaelAbramoff花费21年开发创建的AI自动系统IDx-DR,正在由美国食品和药物管理局(FDA)加快审查,并将很快投入临床使用。该系统能够用于尽早发现糖尿病患者失明的主要原因——糖尿病视网膜病变,从而加以预防、提前治疗。
到今年,IDx公司和FDA已经用了7年时间来确定评估系统准确性和安全性的标准。
值得一提的是,这一系统在没有眼科专家的帮助下,就能自行诊断。由于目前许多患者经常都要等待数周或数月才能看到眼科专家,无法及时诊断,因此,这一系统的出现患者来说可能会产生巨大影响。
据Abramoff介绍,IDx公司还对系统做了一些必要的调整,以便从实验室走出来,真正进入诊所,得以应用。比如,IDx团队添加了一个互动组件,当AI的诊断质量足够高时,系统就会将拍摄的视网膜图像情况反馈给护士或医生。在对公开数据集进行早期测试后,IDx公司在去年夏天完成了一项900人的临床试验,将进行了四小时培训的系统及具有10年以上经验的专家通过摄取和分析视网膜图像,从而提供的诊断结果相比较。虽然Abramoff还拒绝分享审查结果,但他指出:“我们对此非常兴奋。”
3.科学家利用AI预测人类死亡时间,从而改善医疗服务质量
由吴恩达与斯坦福大学计算机科学系教授AnandAvati、斯坦福大学生物医学信息学研究中心KennethJung、LanceDowning与NigamH.Shah,以及斯坦福大学医学院StephanieHarmon六位斯坦福大学科学家组成的研究小组正在研究如何利用人工智能技术预测人类的死亡时间,从而改善对其的姑息治疗程度,或者对患有严重疾病的患者提供专门的护理。
据统计,在美国所有需要接受姑息治疗的病人(占所有住院病人7%-8%)中,只有不到一半的人真正接受了这种治疗。这与医生在判断患者的生存时长方面往往过于乐观有很大的关系。此外,姑息治疗的相关护理人员及资源也较为有限。因此,为了尽可能帮助更多适合此种安慰疗法的病患,斯坦福大学的研究小组希望利用人工智能技术发现剩余生命仅为三到十二个月的对象。
以往的做法是,由医生检查每一份病例表,借此确定病患是否有资格获得姑息治疗方式。但这整个过程非常耗时,而且医生的个人偏见可能对最终护理决定产生影响。
而通过人工智能技术,就能够让深度学习算法自动评估住院病人的EHR(电子健康记录)数据,帮助姑息治疗怀团队判断哪些病人可能需要姑息治疗。
为了进行这项研究,研究小组使用了斯坦福医院及露西尔-帕卡德儿童医院中的200万份成人和儿童电子病历作为数据样本。
但需要强调的是,这套模型的预测结果仅被用于在姑息治疗小组进行病例审查(及自动转诊)时推荐部分符合条件的病患。人类医生仍然负责整个审查流程的主导工作,而该项目所得出的结果只作为符合姑息治疗条件的参考,而非对死亡时间的直接预测。
答案来自科技行者团队最爱谈应用的Dora老师
人工智能的研究领域和应用领域分别有:
(1)研究领域
自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法
(2)应用领域
智能控制,机器人学,语言和图像理解,遗传编程
人工智能十大的应用场景:
1、农业
许多人工智能技术已被用于农业,如在无人机,喷洒农药除草、实时监测作物状况、材料采购、数据收集、灌溉、收获和销售。通过人工智能设备终端的应用,农业和畜牧业的产量得到了很大的提高,许多人工成本和时间成本也大大降低。
2、通信
智能呼出系统、客户数据处理(订单管理系统)、通讯故障排除、病毒拦截(360等。),骚扰信息拦截等。
3、医疗
利用最先进的物联网信息技术,实现患者与医务工作人员、医疗服务机构与医疗设备的互动,逐步发展实现企业信息化。例如,健康监测智能可穿戴设备)、自动提示用药时间、禁忌症和剩余剂量的智能用药系统。
4、社会保障
安防监控(数据实时联网、公安系统实时调查分析数据)、电信诈骗数据锁定、罪犯抓捕、消防救援领域(消防、人员援助、特殊区域作业)等。
关于人工智能运用场景到此分享完毕,希望能帮助到您。