人工智能领域选题?人工智能领域
15
2024-06-10
老铁们,大家好,相信还有很多朋友对于人工智能怎么应聘和人工智能怎么应聘的的相关问题不太懂,没关系,今天就由我来为大家分享分享人工智能怎么应聘以及人工智能怎么应聘的的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!
本文目录
谢谢邀请!
软件工程师转行做人工智能是一个不错的选择,但是要根据自身的知识结构进行相应的准备。对于研发级软件工程师(研发级程序员)来说,转行做人工智能是相对比较容易的,因为研发级工程师往往都有扎实的算法基础。对于应用级软件工程师(应用级程序员)来说,转行做人工智能需要一个系统的准备(学习)过程。
人工智能目前的研究方向比较多,比如自然语言处理、机器学习以及计算机视觉都是不错的研究方向,下面就以机器学习为例,说一下作为应用级软件工程师来说,都应该做好哪些准备。
首先,需要系统的学习一下算法知识。机器学习的研发是以算法为核心进行展开的,所以要有一个扎实的算法基础。这个过程需要了解一些比较经典的算法设计过程,逐步培养起解决问题的思路。这部分的学习内容包括随机算法、堆排序算法、快排、计数排序、贪心算法、核算法、势能法、图算法、多线程算法、数论算法和近似算法等,在学习算法的过程中也会连带着把数据结构一并学习一下,因为算法和数据结构本就不分家。
其次,了解机器学习的实现步骤。机器学习的流程包括数据收集、数据整理、算法设计、算法实现、验证算法和应用算法,数据收集是机器学习的第一步,目前可以用于机器学习的公共数据集并不少,对于实验来说已经够用了。接下来就是了解常见的机器学习算法,目前比较常见的机器学习算法包括NB、k-mean、kNN、SVM、Apriori、EM、PageRank、CART等算法,对于有算法基础的人来说,这些算法的学习并不困难。
最后,选择一门编程语言来实现这些算法并对其进行验证。对于软件工程师来说,这个步骤还是相对比较轻松的,目前使用Python做机器学习的算法实现是一个比较常见的做法。
人工智能是我的主要研究方向之一,目前我也在带相关方向的研究生,我会陆续在头条写一些关于人工智能方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有人工智能方面的问题,也可以咨询我,谢谢!
谢谢邀请!
作为一名计算机专业的研究生导师,我来回答一下这个问题。
作为机械专业的本科生来说,在考研的时候选择自动化、控制和人工智能方向都是不错的选择,在学科体系上也具有一定的连续性,在当前产业结构升级的大潮下,选择人工智能方向会有更加广阔的发展前景。
在当前大数据、云计算和物联网的推动下,传统行业,尤其是制造业对于人工智能的呼声还是比较高的,加之制造业领域也有一定的自动化基础,所以未来传统制造领域会释放出大量的智能化岗位需求。
对于机械专业的本科生来说,在具体方向的选择上,更好的选择是立足本专业进行选择,比如智能装备等细分方向就比较适合机械专业的本科生,一方面原因是智能装备需要具备一定的机械知识基础,另一方面智能装备未来的落地应用前景比较明朗,从学习和就业两个角度来看,都比较适合机械专业的本科生。
学习智能装备方向,对于机械专业本科生来说,需要做好三方面知识储备,其一是系统地学习一下计算机基础知识,包括操作系统、算法设计等内容,这些内容可以在研一期间完成;其二是需要注重一下动手实践能力的培养,重点在于嵌入式编程方面;其三是了解一定的行业知识,智能装备的研发一定要有大量的行业知识,这样才能实现科研成果的落地应用。
在导师的选择方面,可以根据导师的研发领域进行选择。通常来说,研究生的课题方向要与导师保持一致,这样才能够获得导师更为全面的指导,而且也会获得更全面的科研资源。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!
我认为对于学习条件来说并无硬性要求,人工智能涵盖面比较广泛,学什么,怎么学这个必然要视你的学习目的而定。下面,我将出于我自己的学习经验对这个问题进行简要解答。
细分的话,我认为人工智能可以分为两个学习方向。其一,是出于科研目的的理论知识学习;其二,是出于应用目的的开发技能学习。当然,两个方向并非完全独立,选择一个学习方向,必然也会涉及另一个方向的学习,只不过学习侧重点不同。
以科研为目的的理论知识学习
顾名思义,人工智能就是以机器模拟人类的思考方式去处理一系列比较复杂的任务。但是,机器真的就有智慧吗?对计算机运行原理稍微了解的人都明白,答案是否定的!机器永远都是机器,它不可能有智慧,最起码就目前的计算机体系结构而言,它的智慧也只是在强大的算力上模拟来的,机器并不会思考!但是,就人工智能产品而言,它确确实实在进行一些列复杂的思考……而这又怎么解释呢?答案是“人类规定了机器在处理问题时的一系列规则”,而这个规则的定制就属于人工智能学习方向上的以科研为目的的理论知识学习。
通过上述解释也可以看出,人工智能理论知识的学习并不简单,最起码对于全国99%的人来说这是一个比较抽象的学科领域。作为学习者,我认为应当具备以下几个学习条件:
1.良好的英文文献阅读能力。就目前情况来看,不管是国内专家还是国外专家,都更倾向于通过英文期刊来发表自己的研究成果,所以,良好的英文文献阅读能力对于了解和学习领域前沿成果,培养自己的科研思路是非常重要的。
2.扎实的数学基础,对高等数学、线性代数、离散数学等应具有最基本的掌握。人类对于机器智能化运行规则的规定正是通过一些列复杂的数学公式完成的,以卷积神经网络为例,如果我们不懂最基础的卷积运算,那怎能搞懂什么是卷积神经网络?我认为,这也是学习人工智能最难的一部分。
3.良好的计算机知识体系。人工智能虽然不是因计算机而生,但却是因计算机而火。所以,掌握基本的计算机知识,有基本的编程基础对于学习人工智能理论知识有很大的帮助,马克思说实践是检验真理的唯一标准,只有在不断的应用、测试中,我们才能更好的理解其基本运行原理。
当然,以科研为目的的人工智能理论学习所要满足的条件远不止以上三个,但是上述三个条件确实是最基本、最难搞定的要求,换句话说,就这三个条件,我认为就可以劝退百分之99的意向学习者了,如果有兴趣有毅力,能坚持,那就开始吧,学到之后,你将打开剖析世界真理的大门,更精彩的世界在前方等着你。
出于应用目的的开发技能学习
相对来说,这种学习方式相较于理论学习要简单的多。但是,有一点我们需要清楚,虽然优秀的人工智能理论研究者不一定是优秀的人工智能应用开发者,但优秀的人工智能开发者,一定会是一位熟练掌握人工智能理论基础的理论研究者。但世事无绝对,相对于凤毛麟角的技术大牛,如果我们放低自己的要求,将自己定位为一名普通的人工智能开发者,那么,我们的学习条件要低很多。可以总结为以下几点:
1.基本了解所学人工智能领域的基本原理。对于以开发为目的的学习方式来讲,基本了解所学领域的基本原理是非常有必要的。同样的,我们以卷积神经网络为例,如果我们要以卷积神经网络开发一款识图工具,那么我们最起码要懂得如何在代码中设置卷积核的大小,要懂得设置几层神经网络效果最好,要知道什么是特征向量,并懂得如何通过特征向量计算两张图片的相似度。
2.掌握以python为主的计算机编程语言。因为就我自己而言,python是我在人工智能领域的主力开发语言,但这并不意味着其它语言不行。比如,如果熟练使用java,也是可以的。我之所以推荐python,那是因为用python做人工智能开发的人太多太多了,相对来说基于python的来源工具和教程也是非常的多,对于我们的学习,会有比较大的帮助。
3.要懂得充分利用以github为主的代码托管平台,并养成勤查好问的好习惯。对于这一条我就不细说了,总结一句话,不会查找现成的开源代码的程序员不是一个合格的程序员。
总而言之,不管是理论学习还是应用开发学习,在人工智能领域都是不简单的,当然,有志者事竟成,如果真的感兴趣,我相信没有什么能够阻挡你学习的步伐。
最后插一句,我认为研究生更适合从事人工智能领域的工作,因为有一个好的指导老师对于学习人工智能是非常有帮助的,在这一资源上,我相信大多数人是无法和研究生相比的。
主要是数学要好,数学思维好了,代码只是一种工具。网上有很多免费教程,看看你就能对人工智能有所了解。
好了,本文到此结束,如果可以帮助到大家,还望关注本站哦!