人工智能围棋图片(人工智能围棋图片高清)

mandy 0 2024-01-06

本篇文章给大家谈谈人工智能围棋图片,以及人工智能围棋图片高清对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

本文目录

  1. 围棋有人赢过ai吗
  2. 最近围棋人工智能爆棚,是有特别的原因吗?
  3. 阿尔法狗战胜诸多围棋高手,人工智能真的超越人类了么
  4. 为什么人工智能下围棋,算圆周率很厉害,但无法证明数学猜想?

围棋有人赢过ai吗

没有赢过

在围棋领域,人类曾经长期认为人类选手无法战胜人工智能(AI)。然而,自从2016年以来,由DeepMind开发的AlphaGo程序在与世界冠军级别的围棋选手对弈中取得了重大突破,先后战胜了韩国围棋选手李世石和中国围棋选手柯洁。这一事件引起了广泛的关注和讨论。

AlphaGo的成功表明,在特定的条件下,AI已经能够超越人类围棋选手的水平。AI在围棋中的优势在于其强大的计算能力和深度学习算法,能够通过分析大量的围棋棋局和对弈数据来提高自身水平。

尽管如此,仍然有很多人类围棋选手能够与AI进行艰苦的对弈,并且取得了不错的成绩。人类选手在围棋中具有独特的直觉、创造力和战略思维,这些特质使得他们在某些情况下能够对抗AI。

总体而言,目前的AI在围棋领域已经达到了非常高的水平,但人类围棋选手仍然有机会与之竞争并取得胜利。围棋的发展也将继续推动AI技术的进步,相信未来会有更多有趣的对局和挑战出现。

最近围棋人工智能爆棚,是有特别的原因吗?

围棋,曾经被认为是人工智能无法攻克的领域,直到2016年3月前,整个棋界还是认为电脑不可能在十年乃至百年内达到职业棋手水平。

可是结合了深度学习算法的alphago出现了。。。。。。接下来发生的事情全世界都知道了。Alphago达到了一个人类无法企及的水平。

同时,deepmind公司通过nature论文公布了算法的细节,使有志于此的软件团队能够编制自己的"alphago",于是涌现了越来越多通过论文算法学习达到很高水平的围棋人工智能程序。

阿尔法狗战胜诸多围棋高手,人工智能真的超越人类了么

这个事情非常真,不必再有任何的疑问了,在棋牌这个领域,人类已经完败于人工智能。不过这一切都是人类智慧的进步。

如果说问什么样的棋有可能不被阿尔法狗这样的人工智能绝对战胜,那么请关注一下奇袭象棋,该棋正在广东象棋网棋友交流栏目介绍讨论。

为什么人工智能下围棋,算圆周率很厉害,但无法证明数学猜想?

人工智能目前的表现确实不错。在许多领域已经碾压人类的智慧。比如下围棋,可以让人类顶尖高手两个子。但是证明数学猜想AI还没有这个能力。为什么呢?这要从人工智能的发展讲起。

人类很早就掌握了圆周率的计算方法。中国古代的数学家在这方面多有建树。公元263年,魏晋时期的数学家刘徽(225年-295年)撰写了《九章算术注》,其中有一篇1800余字的注记,这篇注记内容就是数学史上著名的“割圆术”。后来南北朝时期杰出的数学家、天文学家祖冲之(429年-500年)在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。而在掌握计算方法之后计算圆周率就是个力气活。在电子计算机出现后计算圆周率就是小菜一碟。

人类智慧和人工智能真正的较量是在解决复杂问题的能力上。

第一场较量是1997年IBM的深蓝战胜了国际象棋等级分排名世界第一的棋手加里·卡斯帕罗夫。战绩3.5:2.5(2胜1负3平)。首先1997年版本的深蓝输入了当时搜集到的100年内所有著名棋手的棋谱。1997年版本的深蓝运算速度为每秒2亿步棋。1997年的深蓝可搜寻及估计随后的12步棋,而一名人类象棋好手大约可估计随后的10步棋。正如中国古代军事家孙子所说:"夫未战而庙算胜者,得算多也。未战而庙算不胜者,得算少也。多算胜,少算不胜,而况于无算乎!"。

第二场较量是在19年后Google的AlphaGoMaster也战胜了等级分排名世界第一的围棋棋手柯洁。人类围棋的顶尖棋手和AlphaGoMaster的网络对战成绩是0:60。而Master还不是AlphaGo的最高级版本。

那么为什么计算机要19年后才能在围棋上战胜人类呢?还是计算的问题。围棋对AI的挑战难点在棋盘空间。国际象棋的空间状态是1043。而围棋是10170个状态空间。这样的游戏具有高分支因子。围棋中的可能场景的数量要大于宇宙中的原子数。光照顾了棋局的宽度(变化)就照顾不了棋局的深度(考虑的步数)。所以围棋职业棋手2016年之前一致认为计算机不可能下过人类顶尖棋手。

从当时的情况看计算机确实是有点“机关算尽”了。于是科学家们开始研究新的思路。在资源有限的情况下人是怎么办的?最典型的例子是种花、果时要打尖、疏果。因为植物的营养是有限的。不打尖、疏果就不能得到好的结果。围棋棋盘上的空间状态虽然多但是每个空间状态的价值是不同的。所以对变化的计算要剪枝。问题转化为应该剪除谁?

解决这个问题的就是蒙特卡洛算法和神经元网络的深度学习。

什么是蒙特卡洛算法?举个例子:有一个箱子里边有无数个苹果。想找出最大的。但是人从外边看不到苹果的大小。每次可以随机取出一个。然后和上一次的比较。大的留下。这样重复100次、1000次之后是什么结果呢?留下的不一定是最大的苹果,但一定是在目前最接近最大苹果的苹果。

和蒙特卡洛算法对应的是拉斯维加斯算法。也举个例子:还是,一个箱子里边有无数把钥匙。想找出能打开一把锁的钥匙。还是每次可以随机取出一把来试。打不开扔掉。这样重复100次、1000次之后是什么结果呢?有可能碰上了,但是不保证一定能碰上。

人下棋时是通过过往的经验来做选择。AI也是通过过往的经验找出最接近正确答案的值给每一个选择点赋值。而人们看到的是每着的胜率。

AI是怎么给每一个选择点赋值的呢?这就离不开神经网络和深度学习。人能思考的物质基础是人的神经网络。AI的神经网络系统就是仿生的结果。有了这个物质基础就有了机器学习。深度学习是机器学习的一部分。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力。深度学习是一个复杂的机器学习算法,又分为有监督学习和无监督学习。

老师留作业,学生做习题集。其实就是一种有监督学习。通过做题掌握了解题规律。于是考试时只要是做过的题型基本上多会做了。

现实生活中还常常会有这样的问题:缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高。很自然地,我们希望计算机能代我们完成这些工作,或至少提供一些帮助。比如在没有计算机的情况下人通过对大量的数据长期观察思考,找到了克山病的原因。但是这个研究发现其规律的过程长达几十年。AI的无监督学习就是模拟人的这个学习过程。可以加快人们对未知事物的理解。

深蓝和阿尔法狗最初都是用人类的棋谱喂养的。比如战胜李世石的AlphaGoLee就大约喂了16万人类棋谱和数万个人类人类总结的模式(定式)。但是最后开源的AlphaGoZero则是从零开始通过“左右互搏”自己通过超过1亿对局自己悟出的围棋真谛。自学成才的AlphaGoZero水平不但远超AlphaGoLee,就连横扫千军的AlphaGoMaster也不是AlphaGoZero的对手。这就是职业棋手说的AlphaGoLee的棋还能看出高明的地方(因为有人类的影子),AlphaGoZero的棋则看不懂的地方。许多过去的共识被纠正。数以万计的定式被废弃。

说了这么多,就是说AI很有用也很厉害。比如在图像识别方面(在数万个摄像头的监控系统中找出嫌疑人)。比如在自动驾驶决策方面。AI都表现出超人的能力。

但是AI目前都是按照人类设定的规则运行和学习的。超出人类的规则就乱套了。比如2019年以前的围棋AI都是按照中国规则设计和训练的。如参加按照日韩围棋规则的比赛在局面仅好一目半目时会发疯(AI以为局面落后使出非常手段)。直到后来开发人员按不同规则修改了程序并按新条件训练AI。这个问题才得到解决。

最后回到为什么还无法证明数学猜想。简单说就是因为人类还没法给AI规定规则和学习方法。

在中国数学猜想里最有名的是《哥德巴赫猜想》。德国人哥德巴赫在1742年提出的两个猜想:(1)每个大于2的偶数都是两个素数之和;(2)每个大于5的奇数都是三个素数之和。中国数学家华罗庚、陈景润等对证明这个猜想做过重要贡献。

其实中国人很早也意识到这个问题。老子的《道德经》里:道生一,一生二,二生三,三生万物。为什么一、二、三就生万物?可以说也是意识到所有的数是由最基本的素数组成的。

但是意识到是一回事,证明是另一回事。人类还没有找出证明的规律。所以目前没有办法教AI训练。也许以后的人工智能进步了可以自己找出学习、思考的方法。但是目前现实中的AI还没有这个能力。

好了,本文到此结束,如果可以帮助到大家,还望关注本站哦!

上一篇: 人工智能未来技术走向 人工智能未来技术走向发展
下一篇: 人工智能无人超市视频 人工智能无人超市视频播放
猜你喜欢