人工智能领域选题?人工智能领域
15
2024-06-10
很多朋友对于人工智能工具应用实例和人工智能工具应用实例图不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
本文目录
人工智能共涉及九大板块,具体包括:
1、核心技术板块(AI芯片、IC、计算机视觉、机器学习、自然语言处理、机器人技术、生物识别技术、人脸识别技术、语音识别、大数据处理等)
2、智能终端板块(VR/AR、人工智能服务平台、家居智能终端、3G/4G智能终端、金融智能终端、移动智能终端、智能终端软件、智能硬件、软件开发平台、应用系统等)
3、智慧教育板块(教育机器人、智慧教育系统、智慧学校、人工智能培训等)
4、智能机器人板块(服务机器人、农业机器人、娱乐机器人、排险救灾机器人、医用机器人、空间机器人、水下机器人、特种机器人等)
5、智慧城市及物联网板块(智慧交通,智能电网,政务大数据应用,公共安全、智慧能源应用,智慧社区、智慧城建,智慧建筑,智慧家居,智慧农业、智慧旅游、智慧办公、智慧娱乐,智慧物流、智慧健康保障、智慧安居服务、智慧文化服务等)
6、智慧医疗板块(医疗影像人工智能、智能辅助诊断提醒/临床决策诊断系统、外科手术机器人、医疗服务机器人、医疗语音识别录入、混合现实技术医疗大数据平台、数据分析系统(BI)、精准医疗等)
7、智能制造板块(智能化生产线、工业机器人、工业物联网、工业配件等)
8、智能汽车板块(汽车电子、车联网、自动驾驶、无人驾驶技术、激光雷达、整车厂商等)
9、智慧生活板块(未来生活模式、智能生活家居、智能家电、3C电子、智能穿戴等)
该题目有些大,为了更好地说明,我从下面这两张图说起:
正所谓“有需求就有市场”,正是企业有“节省人力、提高效率”的巨大需求,才推动了人工智能技术的快速发展!
新技术的快速迭代应用,当前人工智能向着两个截然相反的方向发展,即人工增强与人工替代!不管哪个发展方向,人的活动都产生了巨大的变化!
当前阶段,简单的重复性工作正广泛被智能化产品替代,涉及行业与岗位之众,超乎我们所想像,尤其是在制造业,搬运类的工作、单一动作的作业,已被自动化流水线与自动化装备替代!而在服务业,电话营销、客服正被智能机器人取代!随着机器深度学习技术的深入开发与应用,将有更多的岗位(不分行业)被智能机器人所替代,下一批被替代的岗位将是具有一定创作能力的岗位!最后,当机器在深度学习能力的加持下,无限逼近独立思考时,人又将何去何从?!
所以,各行业、各岗位,人工智能技术均会实现“节省人力、提高工作效率”的效果,只是时间与条件成熟的问题!
随着网络的发展,我们现在的生活已经开始逐渐步入人工智能的时代了,无人超市、导航机器人、移动支付、自动驾驶等等,已经悄悄的融入了我们的生活中。
人工智能带给生活的变化,我认为有以下几点:
1)生活便利化
随着移动支付、滴滴打车等新的支付手段,出行方式的变化,我们的生活越来越便利化,无需再随身携带现金银行卡,也无需再傻傻的在路口翘首以盼出租车,只需要一个手机,就可以在生活中来去自如。
2)家居便捷娱乐化
现在智能家居已经普及到生活中的方方面面,只需要你的一个智力,空调就可以调到合适的温度、电视就可以播放你喜欢的节目,还可以陪你聊天,将原来单调的生活通过智能机器人沟通,我们只需要知道我们要什么就可以了;
3)工作轻松化
现在无人叉车、智能物流分拣等自动化设备以及非常成熟,未来我们可能只是做在办公室里输入我们的要求,机器设备就能为我们保质保量的完成,再也不用繁重的体力劳动。
智能化水平会越来越高,通信能力越来越强,随着5G、6G的发展,未来万物互联互通不是梦,可能未来我们只需说出我们想要的,智能工具、设备就会运作起来,送到我们面前。
人工智能在制造生产有哪些应用的这个话题足够大,这里我假定提问者想要讨论的边界是如何通过人工智能这项技术代替人脑甚至超越人脑的功能,来实现制造业生产效率的提升。
为什么制造业需要人工智能?从两个维度来解读,首先是技术上:计算机处理速度大幅提升、存储成本下降、以及云计算、物联网等技术的发展,让人工智能的应用成本大幅降低。其次是需求上:随着消费者个性化和产品品质升级的需求发展,大大增加了制造业的复杂性,包括生产的组织形式、质量检测环节、仓储物流等环节。随着系统越来越复杂,人的学习曲线就会越缓慢,人应对复杂系统的能力就会成为制约技术进步和应用的瓶颈。在传统工业界大都以人的决策和反馈为核心,这就会导致系统中有很大一部分的价值并没有被释放出来。而人工智能为工业带来的变革,就是摆脱人类认知和知识边界的限制,为决策支持和协同优化提供可量化依据。
1、人工智能在生产产线的应用1.1产线设备维护
人工智能在工厂运维的应用:
比如一条生产线突然发出故障报警,机器能够自己进行诊断,找到哪里产生了问题,原因是什么,同时还能够根据历史维护的记录或者维护标准,告诉我们如何解决故障,甚至让机器自己解决问题、自我恢复。例如,在一个电网中,要能够可靠地定位在电网的哪个地方出现了问题,用常规方法大概只能做到80%。西门子利用了深度学习技术对历史故障事件学习,通过已经分布在电网中的继电器,来更好地判断电网出了什么问题,出在哪个地方等等。学习算法已经嵌入到我们标准断路器的产品中。
人工智能在预测性维护的应用:
如果工业生产线或设备如果突然出现问题,那造成的损失是非常巨大的。利用大数据建模和神经网络等算法,可以让机器在出现问题之前就感知到或者分析出可能出现的问题。比如,工厂中的数控机床在运行一段时间后刀具就需要更换,西门子的数控机床预防性维护解决方案,通过分析历史的运营数据,机器可以提前知道刀具会损坏的时间,从而提前准备好更换的配件,并安排在最近的一次维护时更换刀具。
1.2产线设备参数优化
生产产线工位少则几十个,多则数百个,涉及的产线设备、生产物料、工人都非常多。通过基于生产线的大量数据,基于大数据分析和智能算法可以优化生产工艺、提升产品品质。在中策橡胶,基于阿里云ET工业大脑,将生产端的各类数据进行深度运算和分析,形成了资源最优利用的方案组合,提升了5%混炼胶合格率。在天合光能,阿里云数据科学家通过研究光伏电池的业务流程和制作工艺,构建出数据分析模型,对工艺参数进行调整,最终在丝网印刷环节捕获到了关键因子,优化后A品率提升了7%。
2、人工智能在质量检测的应用现在有很多工厂传统上都是用人工在做质量检测的工作,在生产流水线上的质检员,他们需要每天花10个小时以上的时间去判断质量。很多工厂这个工作岗位两三个月就要轮一次岗,因为肉眼确实受不了。为什么之前没用技术的手段帮助解决质检的问题呢?主要原因是传统视觉设备误判率比较高。大概是有百分之二十,甚至三十的误判率。人工智能最重要的一个能力,它具备学习能力。比如说,同样一个划痕,它会和传统系统一样,第一次都犯错误。但是人工智能第二次、第三次,它不会犯一样的错误,它具备一个学习能力。同样的问题或者类似的问题,下次它会做出非常精准的判断。而传统的系统除非修改程序,同样的问题,下次它一样会犯错误。
正如百度前人工智能首席专家吴恩达和富士康合作的智能检测,通过利用深度学习,神经网络,就可以让电脑快速学习做自动检测的工作。现在人工智能介入了以后,工厂的这种误判率会在上线时达到3%-4%的水平,并且会逐步减少到最低。
3、人工智能在仓储物流的应用仓储物流的包括环节很多,从入库分拣、库位管理、上下架、出库分拣到物料运输,中间涉及分拣机器人、上下料机器人、立库、AGV小车、叉车等。通过计算机视觉用于分拣机器人的感知和地图定位,利用机器学习和深度学习,实现分检机器人的路径规划和避障。通过数学规划等运筹优化算法和遗传算法,实现仓库上下架策略管理。通过多智能体算法蚁群算法用于多个分拣机器人的协调行动。基于人工智能技术实现货架、商品、机器人的整体协调,能够更快速的实现产品出入库和高效的仓库货架规划。在工厂仓储中,各种类型的全自动流水线、自动分拨、仓储和配送机器人已经开始慢慢应用,基于人工智能技术可以让每一个物料都有最优路径,最短时间送达。
4、人工智能在整体运维的应用运维数据量庞大,基于深度学习技术在庞大的数据量中发掘价值。西门子在西班牙的高铁的运维中有一个整体的应用。西班牙的高铁公司有一条线从马德里到巴塞罗那的,而从马德里到巴塞罗那的航班很多,就像京沪线一样,这个行业面临和航空公司竞争的挑战。后来它公布一个政策,在这条线上如果延误超过15分钟,全额退款。这个高铁线到现在是非常成功的,背后是西门子提供的服务和担保,担保99%的准点率。西门子有一个工业4.0工厂在德国安贝格,在成都也有一个,是它的双胞胎。在安贝格,所有能源的分析、消耗都是通过神经网络来完成。基于人工智能技术来实现工厂整体能耗的降低。同时,西门子在全球30个钢铁厂也用了一些在线神经网络学习以及分析应用,来控制钢铁厂的能耗。
关于人工智能工具应用实例,人工智能工具应用实例图的介绍到此结束,希望对大家有所帮助。