人工智能领域选题?人工智能领域
15
2024-06-10
大家好,手机有人工智能英语相信很多的网友都不是很明白,包括手机有人工智能英语吗也是一样,不过没有关系,接下来就来为大家分享关于手机有人工智能英语和手机有人工智能英语吗的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!
本文目录
因为我自己是学软件的,所以可能对AI比较熟悉一点,AI是人工智能的简称,许多人喜欢把AI理解为机器人,其实这样是不准确的。我们可以把人工智能拆开来解释为“人工”和“智能”,简单来讲就是由我们人类创造出来的智能。换句话说,只要是人类创造出来的,能提高人类的生产生活的效率,降低重复性操作,或者能够代替人类工作的都可以称作AI(人工智能)
第一层——两化融合
内容:
自动化——制造设备具备一定自动化能力,可实时产生生产制造的过程数据。
信息化——信息化主要指企业具备信息化能力,至少已经实施如ERP、MES、APS、WMS、SCM等传统软件,
物联网——具备RIFD、环境传感器等感知元件,可产生设备物联、物料物联、环境信息等。
作用:数据源
关键词:多源异构数据
第二层——信息通路
内容:
内部通路——打通企业内部网络数据通路,有条件可建立数据仓库或大数据中心。
外部通路——与互网联信息关联,通过爬虫或第三方数据服务获取商业舆情、用户画像等信息。
安全性——即在安全的基础上实现信息互通,尤其是内外部互通时,信息安全直接影响生产经营,甚至影响企业的竞争力。
作用:数据通道
关键词:消除信息孤岛
第三层——大数据
内容:
分布式集群——最著名的当属Hadoop生态圈,地球人都知道。
多源异构数据处理——多源是指企业需具备广泛数据来源,多源同时意味着较大数据量,传统IT架构处理千万级数据已经很困难了,要么牺牲时间要么牺牲硬件,而在大数据的分布式集群架构下,亿级数据秒处理只是入门门槛;异构是指要处理结构化数据、半结构化数据、非结构化数据,在传统的关系型数据库架构下,非结构化数据的处理采用对象存储,很难做到全文检索,而大数据架构下非结构化数据直接处理的模式多变灵活,且可与结构化数据进行关联分析。
数据运营——数据运营的概念在传统软件产品的世界中几乎是不存在的,以往软件提供特定功能,用户使用其功能。而在大数据的世界里,如果把数据比作钻石矿,大数据平台提供数据采集能力,数据就被开采;平台提供处理能力,数据矿就被提炼;平台提供配套运营体系,数据矿就变成了光彩夺目价值连城的首饰。数据运营能力决定了数据的价值,同时是不同的数据也是不同的矿藏,挖掘开采方式也不同,地貌也不同,因此配套解决方案也不应一套方法放之四海而皆准。
作用:数据探索
关键词:4个V(高速、高价值、大数据量、多样性)
第四层——人工智能
内容:
机器学习——分为有监督学习和无监督学习两种,当下最火的自然就是借AlphaGo扬名立万的深度学习领域了。
算法模型——构建数学算法模型,为企业应用场景提供支撑。可以是古老的贝叶斯,也可以是神经网络、灰度预测、随机森林等,原则就是算法为应用场景服务。
智能决策
作用:自学习能力参与决策、生产经营
关键词:自学习——只有具备自学习能力,才称得上人工智能,才具备了模拟人脑的能力,才能做我们的制造能力具备了大脑,才能称得上智能制造。
自从麒麟970率先加入NPU模块后,手机处理器似乎又回到了当初核心数量大战的时代,高通和苹果纷纷在处理器中加入AI计算模块,通过针对AI计算设计模块,不断提高处理器AI算力。那我们该如何衡量这些处理器的AI算力呢?我们不妨试试这些软件。
不过说AI跑分之前,我们首先要搞清楚各大厂商所谓的AI核心到底有什么用,是干什么的。而要分析作用之前,我们需要先解释清楚AI这个流行词。
华为Mate20Pro(8GBRAM/全网通)电商报价京东商城¥6299天猫商城¥5699ZOL商城¥6300手机上的AI到底是什么东西
所谓AI,其实就是指人工智能,如果将范围缩小在硬件层面,就是指模拟人类大脑结构的人工神经网络。说白了,就是模拟人的神经结构和功能的数学模型或计算模型,通过大量的人工神经元联结进行计算。不同于传统逻辑推理,基于大量数据统计的人工神经网络具有一定的判断力,在语音识别和图像识别上特别有优势。
单层神经元网络
而目前手机真正能用到AI(也就是神经网络)的功能也就集中在图像识别这一领域,各大厂商新加入的各种拍照方面的算法优化,也正是得益于手机图像识别能力的提升。
所以,现在最能体现手机AI算力的跑分软件,都使用了图片处理来衡量处理器的AI算力,AIBenchmark就是其中的代表。
AIBenchmark
这款软件主要测试了手机使用神经网络识别和处理图像的能力。并通过9个独立的神经网络执行不同的图像识别任务,考察各大处理器的AI处理能力。
这9个不同神经网络分别针对不同的识别任务,其一是对象识别/分类,通过输入不同的图片进行训练,AI能够对数量庞大的图片进行区分,在AIbenchmark中,它还使用了不同像素的分辨率来进行识别,以进行更精确和细小物体的检测。
对象识别测试
这一点与我们现在常见的“智慧识别”息息相关,虽然各大厂商都已经推出了这项功能,但是在识别准确率上都有所差别,因此这一项在跑分中还是拥有一定的说服力。
此外,识别也分为物体识别与面部识别,在面部识别上,AI将会将面部图像分解为不同的特征点,然后通过与库里特征点进行比对,最终输出最近似的结果。
面部识别测试
在我们的手机上,除了图片搜图片这种多对多的识别方案,也包括多对一的面部识别解锁方案。相比而言,面部识别方案需要比对的库里数据处理量虽然少,但是在特征点采集上面,面部识别的神经元网络需要经过更深次的细节训练。
之前的AI应用在于识别-对比环节,而这一步的AI则偏向图像处理环节。例如在缺少光学变焦的手机上,如果你放大图片的话,你会发现细节部分的噪点会十分突出,这是因为它细节部分全部都是由算法补充出来的。通过训练,AI能够对缺少过渡部分周围的像素进行识别,并且经过计算后自动填充,使得画面更加平滑自然。
使用神经网络对图像进行去模糊处理
而语义图像分割则是图像识别的进一步应用,也是立足在大量的图像识别上,然后针对整个画面识别的结果进行分类并加以标明。除此之外,AIbenchmark还测试了照片增强环节,这一项功能比较常见,就是常说的拍照AI模式,能够对画面场景进行识别以后按照预定的算法预设进行调整,比如说画面集体提亮,蓝天白云饱和度拉高等。
分割图像语义
前面说了这么多测试全部都是建立在图像识别上,但是对于一般手机而言,大量的图像计算会消耗大量的内存,所以最后一个测试,也是对手机内存大小的测试。
内存大小同样会限制识别图像大小
说了那么多,我们来看看目前市面上的处理器跑分成绩到底如何。我们将AIBenchmark官方的跑分天梯图奉上,大家也可以自己下载这个软件(搜索AIBenchmark即可),测测自己手机的AI性能究竟如何。
AI跑分排行榜
需要说明的是,目前跑分的前三名都是开发平台上测试的处理器。既然平台不同,性能和手机内部的同款处理器有差别也属于正常。
同时这个跑分软件也有很大的局限性,比如尚未支持iOS系统等问题,不过相信未来还会有更全面的AI评分标准。
毕竟目前的手机AI处理还处在“初级”水平,未来的路还很长,手机阵营三大芯片巨头谁胜谁负还未可知也。
手机出现机器人声音可能是因为以下原因:
1.手机硬件问题:如果手机的扬声器或麦克风损坏或不良,可能会产生机器人声音。
2.网络问题:在进行电话或视频通话时,网络连接不稳定,可能会引起声音失真和机器人声音。
3.软件问题:应用程序或操作系统中的错误或漏洞可能导致机器人声音。
4.电池问题:如果手机的电池电量过低,它可能会影响声音质量,产生机器人声音。
5.其他干扰:来自其他电子设备,如无线电或电视,可能干扰手机信号,导致机器人声音。
如果手机经常出现机器人声音,建议检查软件和硬件问题,或咨询专业技术支持。
关于手机有人工智能英语到此分享完毕,希望能帮助到您。