人工智能领域选题?人工智能领域
15
2024-06-10
大家好,感谢邀请,今天来为大家分享一下怎样跟紧人工智能的发展的问题,以及和人类与人工智能如何发展的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!
本文目录
人工智能是通过学习人类的数据,从中找出规律,然后代替人类在各个领域工作。如果你想知道人工智能是如何从人类的数据中学习的,可以先从机器学习的算法入手,这些算法有趣且不难理解,是很好的激发学习兴趣的着手点。
机器学习的算法有比如:
非监督式学习中的K-Means算法,DBSCAN,t-SNE等等,主要不是用来预测,而是对整个数据有一定的深入了解。
监督式学习中常见的有:
回归算法:试图采用对误差的衡量来探索变量之间的关系的一类算法,常见的种类有最小二乘法,逻辑回归,逐步式回归,多元自适应回归样条,以及本地散点平滑估计。决策树学习:根据数据的属性采用树状结构建立决策模型,通常用来解决分类的问题。常见种类有:分类及回归树,随机森林,多元自适应回归样条,以及梯度推进机。(虽然名字长但是内容不难理解)深度学习算法在近期赢得了很多关注,特别是百度也开始发力深度学习后,更是在国内引起了很多关注。在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:卷积网络,堆栈式自动编码器。(同样是名字长但是内容不难理解)了解过一些算法后,就可以简单的跑一些数据来做自己的预测了!这时需要学习一下编程语言Python,具体的指令非常简单,几乎一行代码就能训练好预测模型,然后做出自己的预测结果了!具体资源有很多教机器学习的书籍和视频,B站和西瓜视频都有很多人在科普。
如果想自己做一些预测项目自娱自乐一下,也可以去Kaggle这个网站,有很多有趣的项目,网站提供数据,自己做模型做预测然后提交,比照精确度,满满的成就感。网站上也有很多人提供自己的解决思路和代码,可以去跟大神们学习一下。很有名的一个项目是:预测泰坦尼克号每位乘客最后有没有生存下来,生存率跟他们在船上的位置,性别,收入,家庭人数等等都有关系。
人工智能,是人类通过科技手段创造、赋予机器智力,使之具有类人及超人的能力,帮助人类工作,加快提高人类的文明进步。
人工智能的发展将历经亿万年的历程,划分为五个阶段:
1、弱人工智能——具有人的少部分能力。
2、中人工智能——具有人的大部分能力。
3、强人工智能——具有人的全部能力。
4、超人工智能——超越绝大部分人的能力。
5、登峰造极——人机融合,人体量子化,人类进入神级文明。人脑与超级量子计算机融合,具有超级思维计算能力,人体包括大脑可瞬间粒子化,化为无形,可光速飞行,来无影去无踪;也具有可逆的瞬间恢复肉体人形,以留恋凡人之幸福……
更详细内容看《奇遇未来》,进入人工智能超级时代,只有你想不到的,没有看不到的。关注我,在我“小说”栏目中阅读。
人工智能型成大规模产业化,人类切底进入机械和人工智能为人类减负时代。到那时人类须要更高素质改变,人的须求将提升到与智能社会相适应,人工智能将成为新资源供人类共同分享,人类管理模式也会随着智能掌控而调整。如果人工智能不能成为公共享有资源,所有的智能发展都是人类灾难。
这是一个非常好的问题,作为一名科技从业者,我来回答一下这个问题。
首先,当前人工智能领域的相关工作岗位还是比较多的,但是由于当前人工智能行业尚处在发展的初期,所以更多的岗位都集中在研发领域,所以当前要想在人工智能领域从事相关的工作岗位,往往对于自身的知识结构有较高的要求。从近些年来人工智能行业的人才招聘情况来看,往往会集中在研究生人才的招聘上,在具体岗位上都比较倾向于研发级岗位,比如人工智能平台开发岗位等。
对于普通人来说,要想从事人工智能相关工作,除了读研之外,也可以根据自身的知识机构和所处的行业,来制定学习计划。随着企业纷纷上云之后,未来人工智能产品的应用场景会越来越多,相应的人才需求也会逐渐释放出来。所以从这个角度来看,普通人要想进入人工智能领域发展,未来的发展前景还是比较广阔的。
当前人工智能领域的工作岗位除了研发岗位之外,还涉及到大量的方案设计岗位和运维等岗位,这些岗位的人才需求潜力也非常大,而且这些岗位在行业发展的初期,也会有较高的岗位附加值。以计算机视觉方向为例,当前人工智能产品要想落地应用,需要有专业的实施人员来完成方案设计,以便于让技术和场景相契合,同时还需要大量的技术人员来完成智能体的部署。从发展趋势来看,部署人员的从业规模会比较大,而且未来较长一段时间内,这些领域的人才缺口都会相对比较大。
目前对于具有一定计算机基础知识的人,可以把学习的重点放在人工智能平台的使用上,随着人工智能平台在行业领域的落地应用,未来基于人工智能平台来与行业领域相结合从而完成创新,是一个重要的发展趋势。相对于研发级岗位来说,基于人工智能平台进行的行业创新开发会有相对较低的技术门槛,只要经过一个系统的学习过程,大部分人都能够顺利掌握。当然,这个过程也需要完成大量的实践。
目前大型科技(互联网)公司推出的人工智能平台,往往都会基于计算机视觉技术体系,或者是自然语言处理技术体系来打造,而这两个大的技术体系也有比较多的应用场景。随着物联网建设的不断完善,未来人工智能平台与物联网平台也会深度整合,从而为人工智能技术的落地应用带来更多的可能。从大的发展方向来看,未来移动互联网、物联网和人工智能技术将逐渐深入整合,这个过程也很有可能会打开一个巨大的价值空间。
对于当前的大学生和初级职场人来说,要想进入人工智能领域发展,可以先从编程语言开始学起,比如Python就是不错的选择,然后进一步学习人工智能平台知识。在掌握了一些基本的人工智能知识之后,建议初学者找一个实习岗位,然后在实习岗位上提升会更好一些,包括场景的支撑和交流环境的支撑等等。
人工智能技术的学习往往需要有数据中心的支撑,这也是普通学习者在学习人工智能技术所面临的困难之一,同时有专业人士的指导,对于学习人工智能技术也有非常重要的影响。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
关于怎样跟紧人工智能的发展到此分享完毕,希望能帮助到您。