人工智能领域选题?人工智能领域
15
2024-06-10
大家好,今天小编来为大家解答简单人工智能这个问题,简单人工智能项目很多人还不知道,现在让我们一起来看看吧!
本文目录
人工智能专升本的难易程度取决于个人的学习能力、背景知识和努力程度。一般来说,专升本是指从专科升级到本科,相对于高中生直接报考本科,可能会有一些额外的挑战。以下是一些可能需要面对的因素:
学习压力:专升本需要在短时间内学习本科阶段的课程内容,对学习能力和时间管理能力提出了更高的要求。
竞争激烈:由于专升本的名额相对较少,竞争可能会更加激烈。需要有足够的竞争力,包括成绩、综合素质和相关实践经验。
补充基础知识:如果专科背景与人工智能专业相关性较低,可能需要额外学习一些基础知识,如数学、计算机科学等。
学习计划和时间安排:需要制定合理的学习计划和时间安排,充分利用自习时间和课余时间进行学习。尽管面临一些挑战,但只要你有足够的决心和努力,专升本是可以实现的。关键是制定合理的学习计划,积极参与相关实践和项目,提高自己的综合素质,同时保持良好的学习态度和毅力。
谢邀!
在回复《人类与AI(人工智能)如何相处?(https://www.wukong.com/answer/6955462920969830692/)》中谈了在面对拥有自我意识的机器人,人类该如何与之相处?又该遵从哪些伦理道德?接下来,借着回复此问题,向大家介绍一下AI的三大核心要素(也是AI的三大基石)——数据、算力和算法。
数据是AI算法的“饲料”
在如今这个时代,无时无刻不在产生数据(包括语音、文本、影像等等),AI产业的飞速发展,也萌生了大量垂直领域的数据需求。在AI技术当中,数据相当于AI算法的“饲料”。机器学习中的监督学习(SupervisedLearning)和半监督学习(Semi-supervisedLearning)都要用标注好的数据进行训练(由此催生大量数据标注公司,对未经处理的初级数据进行加工处理,并转换为机器可识别信息),只有经过大量的训练,覆盖尽可能多的各种场景才能得到一个良好的模型。
目前,数据标注是AI的上游基础产业,以人工标注为主,机器标注为辅。最常见的数据标注类型有五种:属性标注(给目标对象打标签)、框选标注(框选出要识别的对象)、轮廓标注(比框选标注更加具体,边缘更加精确)、描点标注(标注出目标对象上细致的特征点)、其他标注(除以上标注外的数据标注类型)。AI算法需要通过数据训练不断完善,而数据标注是大部分AI算法得以有效运行的关键环节。
算法是AI的背后“推手”
AI算法是数据驱动型算法,是AI背后的推动力量。
主流的算法主要分为传统的机器学习算法和神经网络算法,目前神经网络算法因为深度学习(源于人工神经网络的研究,特点是试图模仿大脑的神经元之间传递和处理信息的模式)的快速发展而达到了高潮。
南京大学计算机系主任、人工智能学院院长周志华教授认为,今天“AI热潮”的出现主要由于机器学习,尤其是机器学习中的深度学习技术取得了巨大进展,并在大数据和大算力的支持下发挥巨大的威力。
当前最具代表性深度学习算法模型有深度神经网络(DeepNeuralNetwork,简称DNN)、循环神经网络(RecurrentNeuralNetwork,简称RNN)、卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)。谈到深度学习,DNN和RNN就是深度学习的基础。DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层,一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。DNN可以理解为有很多隐藏层的神经网络,是非常庞大的系统,训练出来需要很多数据、很强的算力进行支撑。
算力是基础设施
AI算法模型对于算力的巨大需求,推动了今天芯片业的发展。据OpenAI测算,2012年开始,全球AI训练所用的计算量呈现指数增长,平均每3.43个月便会翻一倍,目前计算量已扩大30万倍,远超算力增长速度。
在AI技术当中,算力是算法和数据的基础设施,支撑着算法和数据,进而影响着AI的发展,算力的大小代表着对数据处理能力的强弱。算力源于芯片,通过基础软件的有效组织,最终释放到终端应用上,作为算力的关键基础,AI芯片的性能决定着AI产业的发展。
加快补齐AI芯片短板
从技术架构来看,AI芯片可以分为四大类:通用性芯片(GPU,特点是具备通用性、性能高、功耗高)、半定制化芯片(FPGA,特点是可编程、功耗和通用性一般)、全定制化芯片(ASIC,特点是不能扩展、性能稳定、功耗可控)和类脑芯片(特点是功耗低、响应速度快)。
AI本质上是使用人工神经网络对人脑进行的模拟,旨在替代人们大脑中的生物神经网络。由于每个任务对芯片的要求不同,所以可以使用不同的AI芯片进行训练和推理。
在过去二十年当中,处理器性能以每年大约55%的速度提升,内存性能的提升速度每年只有10%左右,存储速度严重滞后于处理器的计算速度。随着AI技术的发展,所需数据量变得越来越大,计算量越来越多,“内存墙”(指内存性能严重限制CPU性能发挥的现象)的问题越来越严重。因此,存算一体(将部分或全部的计算移到存储中,计算单元和存储单元集成在同一个芯片,在存储单元内完成运算)有望成为解决芯片性能瓶颈及提升效能比的有效技术手段。
目前,数据中心中核心算力芯片各类通用的GPU占主导地位。IDC的研究指出,2020年,中国的GPU服务器占据95%左右的市场份额,是数据中心AI加速方案的首选。但IDC也做出预测,到2024年,其他类型加速芯片的市场份额将快速发展,AI芯片市场呈现多元化发展趋势。
近些年来,我国AI虽然取得了不少的突破和进展(例如小i机器人主导了全球第一个AI情感计算的国际标准),并在国际上具备一定的竞争力,但AI芯片对外依赖较大(根据赛迪智库人工智能产业形势分析课题组研究指出,国内AI芯片厂商需要大量依靠高通、英伟达、AMD等国际巨头供货),并缺乏AI框架技术(深度学习主流框架TensorFlow、Caffe等均为美国企业或机构掌握)的支撑。
未来人们对科技的依赖会与日俱增,AI也将会成为大国竞争的焦点。为摆脱我国AI的短板,有专家表示AI芯片方面我国可以借鉴开源软件成功经验,降低创新门槛,提高企业自主能力,发展国产开源芯片;算法框架方面则可通过开源形成广泛的应用生态,广泛支持不同类型的AI芯片、硬件设备、应用等。
算法、算力、数据作为AI核心三要素,相互影响,相互支撑,在不同行业中形成了不一样的产业形态,随着算法的创新、算力的增强、数据资源的累积,传统基础设施将借此东风实现智能化升级,并有望推动经济发展全要素的智能化革新,让人类社会从信息化进入智能化。
最后,再顺便打个小广告,“陈思进财经漫画”系列第一部《漫画生活中的财经》新鲜出炉,谢谢关注!
你对这个问题有什么更好的意见吗?欢迎在下方留言讨论!
1、点击菜单栏里的“效果”——“3D",可以看到3D效果包括了凸出与斜角、绕转、旋转三个选项。
2、选择”凸出与斜角“命令按钮,接着就会弹出”3D凸出与斜角选项“的设置面板。
3、勾选预览效果,根据自己的需要,修改凸出的位置、角度、厚度、斜角等等这些,然后就点击确定按钮。这样就可以得到了一个具有立体效果的正方形了。
4、或者想要简单制作一个圆柱体的,先在画布上绘制一个正圆,比如填充颜色设置为橙色,同样地在”3D凸出与斜角选项“的设置面板上设置旋转的角度,把凸出的厚度设置的数值变得大一些,点击确定按钮即可。
5、使用ai软件里面自带的3D效果,可以轻轻松松地把原来的二维图形变成了3D立体效果的图形。
首先,是弈客围棋??
目前弈小天(弈客AI的昵称)的19路简单版大约弈客15-10K水平吧。它有一些AI的通病,比如死活看不清,只要坚持到后半盘,战胜它的希望就很大了
如果你还想了解更多这方面的信息,记得收藏关注本站。