人工智能领域选题?人工智能领域
15
2024-06-10
今天给各位分享人工智能客户细分的知识,其中也会对人工智能客户关系进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录
看看实际应用,就知道人工智能领域。
1、虚拟个人助理
经常使用手机的你一定对GoogleNow和Cortana这些虚拟个人助理不会陌生。只要你说出命令,他们就会帮助你找到有用的信息。例如,你可以问“最近的川菜馆在哪儿?”,“我今天的日程有什么安排?”,“提醒我八点钟给某某某打电话”,然后,虚拟个人助理就可以通过查询信息,然后向手机中的其他app发送对应的信息来完成指令。
这一看似简单的过程实际上就有人工智能的介入,并且扮演着重要的角色。在语音唤醒虚拟个人助理的时候,人工智能会收集你的指令信息,利用该信息进一步识别你的语音,并为你提供个性化的结果,最终会让你觉得越来越好用,达成越用越好用的结果。微软表示,自家的Cortana(中文名叫小娜)可以“不断了解用户”,最终将培养出预测用户需求的能力。
2、智能汽车
你可能还没看到有人上班一边开车,一边看报纸,但自动驾驶汽车确实越来越接近现实。Google旗下的自动驾驶汽车项目和特斯拉的“自动驾驶”功能是最新的两个例子。自动驾驶技术毫无疑问是基于人工智能之上的技术,并且目前发展速度极为迅猛。从英特尔今年年初收购以色列自动驾驶汽车公司Mobileye可见一斑。
今年早些时候华盛顿邮报还有过报道,称Google开发了一种算法,能让自动驾驶汽车像人类一样学习驾驶技术。由于人工智能可以学会玩简单的视频游戏,Google让自动驾驶汽车上路前也测试相同的智能游戏。整个项目的构思在于,汽车最终能够“认清”面前的道路,并根据它所看到的内容做出相应的决策,帮助它在行驶的过程中学习经验。虽然特斯拉的自动驾驶仪功能没有这么先进,但它已经上路使用,同时这也表明此类技术肯定会蓬勃发展。
3、在线客服
现在,许多网站都提供用户与客服在线聊天的窗口,但其实并不是每个网站都有一个真人提供实时服务。在很多情况下,和你对话的仅仅只是一个初级AI。大多聊天机器人无异于自动应答器,但是其中一些能够从网站里学习知识,在用户有需求时将其呈现在用户面前。
最有趣也最困难的是,这些聊天机器人必须擅于理解自然语言。显然,与人沟通的方式和与电脑沟通的方式截然不同。所以这项技术十分依赖自然语言处理(NLP)技术,一旦这些机器人能够理解不同的语言表达方式中所包含的实际目的,那么很大程度上就可以用于代替人工服务。
4、购买预测
如果京东、天猫和亚马逊这样的大型零售商能够提前预见到客户的需求,那么收入一定有大幅度的增加。亚马逊目前正在研究这样一个的预期运输项目:在你下单之前就将商品运到送货车上,这样当你下单的时候甚至可以在几分钟内收到商品。毫无疑问这项技术需要人工智能来参与,需要对每一位用户的地址、购买偏好、愿望清单等等数据进行深层次的分析之后才能够得出可靠性较高的结果。
虽然这项技术尚未实现,不过也表现了一种增加销量的思路,并且衍生了许多别的做法,包括送特定类型的优惠券、特殊的打折计划、有针对性的广告,在顾客住处附近的仓库存放他们可能购买的产品。这种人工智能应用颇具争议性,毕竟使用预测分析存在隐私违规的嫌疑,许多人对此颇感忧虑。
5、音乐和电影推荐服务
与其他人工智能系统相比,这种服务比较简单。但是,这项技术会大幅度提高生活品质的改善。如果你用过网易云音乐这款产品,一定会惊叹于私人FM和每日音乐推荐与你喜欢的歌曲的契合度。从前,想要听点好听的新歌很难,要么是从喜欢的歌手里找,要么是从朋友的歌单里去淘,但是往往未必有效。喜欢一个人的一首歌不代表喜欢这个人的所有歌,另外有的时候我们自己也不知道为什么会喜欢一首歌、讨厌一首歌。
而在有人工智能的介入之后,这一问题就有了解决办法。也许你自己不知道到底喜欢包含哪些元素的歌曲,但是人工智能通过分析你喜欢的音乐可以找到其中的共性,并且可以从庞大的歌曲库中筛选出来你所喜欢的部分,这比最资深的音乐人都要强大。电影推荐也是相同的原理,对你过去喜欢的影片了解越多,就越了解你的偏好,从而推荐出你真正喜欢的电影。
6、智能家居设备
许多智能家居设备都拥有学习用户行为模式的能力,并通过调整温度调节器或其他设备来帮助节省资金,不仅便利、还节能。例如,屋主外出工作,设备自动打开烤箱,无须等到回家再启动,这一点非常方便。人工智能知道主人什么时候回家,就能相应的提前调整温度,而出门在外时则自动关闭设备,这样可以省下不少钱。
另一项家居设备也有人工智能的身影——照明。通过设置默认值和偏好,设备可根据你的位置和你正在做的事调整房子(内部和外部)周围的灯光。例如,看电视就暗一些,烹饪时较明亮,吃饭则亮度适中。智能家居的AI,只要你敢想,没有什么做不到。
7、大型游戏
游戏AI可能是大多数人最早接触的的AI实例。从第一款大型游戏到现在,AI已经应用了很长时间。最早期的AI甚至不能称为AI,只会根据程序设定进行相应的行为,完全不考虑玩家的反应。不过最近几年里,游戏AI的复杂性和有效性却迅猛发展。现在大型游戏中的角色能够揣摩玩家的行为,做出一些难以预料的反应。
像《孤岛惊魂》(FarCry)和《使命召唤》(CallofDuty)这种第一人称射击游戏也能很好地利用AI。敌人可以分析玩家的环境,追踪可能生存的目标。敌人也会找掩护,追踪声音,侧翼攻击,以增加胜利的可能。虽然就AI技术本身而言,在游戏中的应用有点大材小用,但是由于行业市场巨大,每年都有大量精力和资金投入其中来完善这种技术。
8、欺诈检测
你有没有收到过电子邮件或信件——询问你是否用信用卡进行了某些产品支付?如果用户的帐户存在被欺诈的风险,银行会发送此类信件,希望在汇款前确认用户个人已同意支付。人工智能通常部署来监控这种欺诈行为。
一般来说,先将大量欺诈和非欺诈性交易样本数据输入电脑,然后命令电脑分析数据,发现交易中不同类别的情况。经过足够的训练,电脑系统就将能够利用所学和种种迹象辨认出欺诈性交易。
9、安全监控
随着人们对于安全问题越来越重视,监控摄像头也越来越普及,在方便了场景记录和重现之外,也出现了新的挑战:监控摄像头所拍摄的内容仍然需要人工监测。用人力来同时监控多个摄像头传输的画面,非常容易疲倦,同时也容易出现发现不及时或者判断失误的情况。因为,非常有必要在监控摄像头系统中引入人工智能技术,借助人工智能来进行24小时无间断的持续监控。例如,利用人工智能来判断画面中是否出现异常人员,如果发现可以及时通知安保人员。
当然,目前能够实现的技术还十分有限。比如,电脑看到闪光的颜色,可能表明有人入侵或在校园周围游荡,但是识别的精确度仍然有待力高。另外,由于当前技术的限制,识别特定行为依旧比较困难,比如商店中的小偷小摸行为。但在相信在不久的将来,这种技术的改善绝非难事。
10、新闻生成
人工智能程序可以写新闻?听起来似乎很不可思议,但是这就是现实!根据美国Wired杂志统计,美联社,福克斯和雅虎都已经在利用人工智能来编写文章,例如财务摘要、体育新闻回顾和日常报道。目前,人工智能还没有涉及调查类文章,但是如果内容不是太复杂、相对简单,人工智能完全可以搞定。从这个角度来说,电子商务、金融服务、房地产和其他数据驱动型行业都可以从人工智能中受益良多
商业上常用的5种人工智能
当前和未来几年,业务中常用的人工智能通常包括以下五种类型。
分析型AI
功能型AI
交互型AI
文本型AI
视觉型AI
这里是一个简短的介绍
分析型AI分析型人工智能
使用的工具是机器学习和深度学习,用于快速扫描和分析大量的人工智能。数据,并最终以数据为基准为企业决策提供建议。这有助于更准确地预测市场需求,更合理地管理库存以及有效使用资金。
功能类型AI
功能型和分析型人工智能之间的相似之处在于,它还可以分析和扫描大量数据。区别在于它不提供建议而是采取行动。例如,在仓库管理和货物拣配中,速度和准确性可以大大提高。目前,亚马逊已经在使用它。在不久的将来,更多的在线零售公司将使用它来加强仓库管理操作。
互动式AI
当前最发达的交互式AI是chatbot。这种人工智能用于增强许多部门的操作流程以使其自动化,从而大大减少了重复工作和等待时间,并显着提高了客户满意度,最常使用此人工智能的部门或企业是在线客户服务零售,预订等。
文本类型AI
这种人工智能采用的核心技术是语义搜索和自然语言处理。可以实现的功能包括语音和文本的转换。它也可用于支持公司的内部知识库,构建语言意图,识别同义词等。它有效地减少了人工输入的成本和时间,提高了输入效率和准确性。
VisualTypeAI
它将生涩的数据转换为生动的图像,并可以转换图像和视频,从而有助于
奖励人员在处理特定问题时提高理解力,减少分析时间并提高准确性,这为操作带来了很多便利。它还可以提供面部识别解决方案,以提供更好的客户体验并提高零售行业的安全性。
人工智能领域的分类包括,研究包括机器人、图像识别、语言识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人,必须懂得计算机知识、心理学和哲学。
人工智能主要有三个分支:
1)认知AI(cognitiveAI)
认知计算是最受欢迎的一个人工智能分支,负责所有感觉“像人一样”的交互。认知AI必须能够轻松处理复杂性和二义性,同时还持续不断地在数据挖掘、NLP(自然语言处理)和智能自动化的经验中学习。
现在人们越来越倾向于认为认知AI混合了人工智能做出的最好决策和人类工作者们的决定,用以监督更棘手或不确定的事件。这可以帮助扩大人工智能的适用性,并生成更快、更可靠的答案。
2)机器学习AI(MachineLearningAI)
机器学习(ML)AI是能在高速公路上自动驾驶你的特斯拉的那种人工智能。它还处于计算机科学的前沿,但将来有望对日常工作场所产生极大的影响。机器学习是要在大数据中寻找一些“模式”,然后在没有过多的人为解释的情况下,用这些模式来预测结果,而这些模式在普通的统计分析中是看不到的。
然而机器学习需要三个关键因素才能有效:
a)数据,大量的数据
为了教给人工智能新的技巧,需要将大量的数据输入给模型,用以实现可靠的输出评分。例如特斯拉已经向其汽车部署了自动转向特征,同时发送它所收集的所有数据、驾驶员的干预措施、成功逃避、错误警报等到总部,从而在错误中学习并逐步锐化感官。一个产生大量输入的好方法是通过传感器:无论你的硬件是内置的,如雷达,相机,方向盘等(如果它是一辆汽车的话),还是你倾向于物联网(InternetofThings)。蓝牙信标、健康跟踪器、智能家居传感器、公共数据库等只是越来越多的通过互联网连接的传感器中的一小部分,这些传感器可以生成大量数据(多到让任何正常的人来处理都太多)。
人工智能数据收集一般包括的主要方式有:传感器采集、爬虫、录入。
对于新闻资讯类、行业互联网和政府开放的数据,可以通过编写网络爬虫,设置好数据源后进行有目标性的爬取数据。下面是我对除了AI训练数据外,把平时大家接用比较多各种数据源的网址、开放类型、采集方法进行整理分类。
文章到此结束,如果本次分享的人工智能客户细分和人工智能客户关系的问题解决了您的问题,那么我们由衷的感到高兴!