人工智能领域选题?人工智能领域
15
2024-06-10
大家好,脸书人工智能研究相信很多的网友都不是很明白,包括脸书人工智能研究所也是一样,不过没有关系,接下来就来为大家分享关于脸书人工智能研究和脸书人工智能研究所的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!
本文目录
人们直到1950年代才对人工智能真正的潜力进行了调查,产生了“人工智能”这一想法,而人工智能的诞生可谓是饱经沧桑。
英国人艾伦·图灵是一位数学家,每天的日常就是不停的算题,有一天他顿悟了“人算不如天算”,要是能有机器替人算就好了,于是他构思了一个机器:图灵机。
简单的说就是用机器模拟人的计算方式,图灵觉得照这个套路,机器也可以取代人。于是他又做了个实验,让人和机器同时回答问题,看看大家能不能分辨出哪个是机器。
这就是著名的图灵测试。当时很多小伙伴都惊呆了,原来世界是可以算出来的!随后这类觉得凡事都能算,只要告诉机器怎么算就ok的人,称为“符号计算学派”。
还有另一类人认为:人思考问题,得出结论未必靠的是算法,全是靠脑子想出来的。有个专家发现人脑里有很多神经元,它们可以接受、处理、互相传递信息,协同工作,人脑就靠这张神经网络处理各种复杂的问题。这就是赫布理论。
既然人脑可以联合学习,那就用机器模拟我们的神经元,这就是第一个神经网络机。用机器模拟人脑运转的流派,叫做“神经计算学派”。
虽然两个学派走的路不一样,但目的都是想让机器代替人。1956年,两派人在达特茅斯会议上,给这一系列的机器命名为“人工智能(AI)”
1.布局
从产业图谱来看,人工智能主要分为技术层、应用层和基础层。技术层包括人工智能通用技术平台(例如计算机视觉与图像、自然语言处理、语音识别)。应用层包括人工智能行业应用方案、消费类终端或服务等。基础层包括人工智能芯片、算法和数据。
美国巨头呈现出全产业布局的特征,包括基础层、技术层、应用层,均有布局;而中国巨头主要集中在应用侧,只在技术层局部有所突破。
2.实验室
3.收购
中美并购事件近两年密集增加。CBInsights的研究报告显示,谷歌自2012年以来共收购了11家人工智能创业公司,是所有科技巨头中最多的,苹果、Facebook和英特尔分别排名第二、第三和第四。集中于计算机视觉、图像识别、语义识别等领域。Google于2014年以4亿美元收购了深度学习算法公司Deepmind,该公司开发的AlphaGo为Google的人工智能添上了浓墨重彩的一笔。
4.开源平台
谷歌早在2011年就成立AI部门,在谷歌内部,由机器学习驱动的产品和业务不计其数,包括谷歌搜索、GoogleNow、Gmail等,同时谷歌还向其开源Android手机系统中注入大量机器学习功能。2011年第一代机器学习系统,从大量的Youtube图片中学会了识别猫;2015年,谷歌将内部采用深度学习的技术整理到一起,发布第二代人工智能系统TensorFlow,并宣布将其开源。这是一套包括很多常用深度学习技术、功能和例子的框架。得益于庞大的计算和数据资源,谷歌大脑在深度学习方面取得了显著的成果。在几次人机大战中大放异彩的DeepMind公司自2014年被Google收购后,陆续发表了207篇顶级期刊论文,为Google带来了大量研究人才。
2013年卷积神经网络发明者YannLeCun加入Facebook,带领公司的图像识别技术和自然语言处理技术大幅提升。Facebook的深度学习框架是基于之前的Torch基础上实现的,于2015年12月开源。此外,Facebook还开源了人工智能硬件平台BigSur等十余个项目。
微软在2016年整合微软研究院、Cortana和机器人等团队建立“微软人工智能与研究事业部”,现有7000多名计算机科学家和工程师。同年,微软发布了其深度学习工作包CNTK,CNTK使得实现和组合前馈型神经网络DNN、卷积神经网络和循环神经网络变得非常容易。
IBM也开源了其深度学习平台SystemML。IBM主推的认知计算平台也向开发者开放了Watson的认知计算能力,加速人工智能的部署。
2016年,百度开放了其深度学习平台Paddle-Paddle,覆盖了搜索、图像、语音识别、语义处理、用户画像等领域的技术。腾讯不同事业部都在不同领域展开AI研究。AILab注重将技术与腾讯业务场景相结合,即游戏、社交、内容生态。
大公司纷纷拥抱开源有两方面原因:第一,通过开源来构建生态和护城河。无论是谷歌、亚马逊还是BAT都已经拥有云计算基础设施,Google、微软一直在讲的开源、AWS推出的AI功能,本质上并无差别,都是为了赋予自家云端客户更强的数据处理能力。在现有的云服务市场中,科技巨头占据多数,构建基于人工智能的云服务将成为巨头的下一个主战场。AI是信息基础设施的一个升级,是今后产业发展的巨大引擎。巨头都想把握升级过程中涌现的大量机会,赋能全行业。
第二,开源是一种开放式创新。通过开源深度学习平台,不仅可以吸引大量开发者,还可以为机器学习提供大量的数据支持,以及大量的现实场景。在人工智能平台化的趋势下,未来人工智能将呈现若干主导平台加广泛应用场景的竞争格局。
5.结论
第一,基础层的开源算法平台。
美国企业成为此次引领全球人工智能算法研究的领头羊,谷歌、Facebook、微软都已推出了深度学习算法的开源平台,而国内目前仅有百度推出开放平台paddlepaddle。
第二,技术层的云平台。
除了算法以外,大数据、云计算都是实现人工智能技术应用的关键性设施。从目前中美云服务平台发展的情况来看,作为云计算的“先行者”,北美地区仍占据市场主导地位。虽然中国云服务起步晚于美国,但阿里、腾讯、华为等中国互联网及IT企业都推出了领先的云服务平台,Docker技术在我国云计算领域逐步从实验阶段走向应用阶段,在云服务的基础技术上中美差距已不大,但在IT服务环境、用户认知等方面与美国仍存在差距,但这个差距是很快就能缩小并赶超的。
第三,应用层的应用平台。
在人工智能应用平台领域,中、美两国的互联网企业均推出基于人工智能技术的垂直应用平台。在语音平台上,美国有谷歌的Googleassistant、亚马逊的Alexa、IBM的Watson、微软的Cortana、Facebook的Deeptext等领先企业的语音平台,国内百度的百度大脑、科大讯飞语音开放平台等,虽然在开放平台的数量上中国不及美国,但从整体布局来看,基本与美国并驾齐驱。
目前来看,在医学领域,AI已经帮助医生在做一些辅助性的工作了。
比如在疾病诊断方面,2017年,阿里推出了“ET医疗大脑”,在某些疾病诊断方面,比医生准确率还高。例如在超声甲状腺结节诊断上,阿里AI学习了2万张甲状腺片源。通常情况下,人类准确判断率是60-70%,但有了人工智能的帮助,准确率已经提升到85%
同时阿里也在和浙江建德市第一人民医院合作推出了AI病历师,病历是医务人员对患者疾病发生、发展、转轨,进行检查、诊断、治疗等医疗活动过程的记录。病历上的每个信息,都可能对病人的住院费用结算,司法与伤残鉴定,疾病预防等产生重要影响。此前,手写病历因其难以辨认的字迹,经常被患者誉为“天书”。
阿里落地的AI病历师质检在医生书写病历的同时,实时提醒其不合规内容,从源头杜绝非规范病历的产生。该系统还能自动识别医生的诊断是否符合医疗规范,给诊疗上一道AI保险。
目前该AI病历质检系统已经涵盖了入院记录、病程记录、医患谈话记录、手术记录、医嘱单在内的8大医疗文书类型,整体质检点超过180个。
在提高患者的就诊体验上,AI也有一些新的进展,Facebook的人工智能(AI)实验室正与纽约大学医学院合作,尝试将核磁共振成像(MRI)的检查速度提高10倍,假如成功的话,未来放射科医生将在几分钟内就可以完成检测。
未来随着医疗AI能力的不断进化,AI将能够帮助医生做更多的事,使医生能够把精力集中在更重要的事情上。
Facebook的人工智能研究部门(FAIR)的策略是在更广泛的研究社区背景下研发技术,这个团队推进无监督表征学习,而不是借助人类算法干预。应用机器学习部门(AML)在FAIR之后成立,聚焦将研究应用到公司产品中,当前公司正在将机器学习功能应用到各种垂直领域中,比如面部识别,机器翻译以及深度文本语言或文本学习中。在此基础上,16年的时候facebook就发布过他们的人工智能产品deeptext,能够以人类的智商识别聊天内容。Facebook表示,DeepText能够以“接近人类的精确度”,理解人们的聊天内容。另外,依托后台的计算能力,这一工具每分钟能够分析、识别数千条网友评论或是聊天内容。在语种方面,这一工具已经能够分析20多种语言,据说还能够识别一些口头用语等。在今年的时候,facebook让两个机器人聊天,因为程序出现了一些bug,从而导致机器人说出了一些很难理解的语言,新闻都发AI发展出了自己的语言,facebook因此关闭AI系统一类的,其实事后澄清facebook并没有关闭他们的AI系统,而是重新修正了程序。
总之facebook在人工智能领域的最大标签是无监督学习,随着机器学习超越从“正确答案”中学习,开始聚焦独立的模式识别,无监督学习已经成为了人工智能中的重要领域,无监督学习最大的好处在于能够去除更多的,与大数据有关的人类的成分,在今年五月份的时候,公司发布的FBLearnerFlow合理化了端对端UI,公司的人工智能项目和工作流程应用也不限于AML成员,而是各部门都能使用借鉴。
(以上内容中部分来自于高盛的人工智能报告中对于各大公司在人工智能领域的创新性的报告)
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!