人工智能领域选题?人工智能领域
15
2024-06-10
大家好,今天小编来为大家解答以下的问题,关于关于人工智能的评论,关于人工智能的评论语这个很多人还不知道,现在让我们一起来看看吧!
本文目录
对于人工智能,是未来人类必然的追求,并必然发生的事。随着现代化高新科技技术的发展,机器代替了农民,也代替了工人!我们人类唯一能做的事就是不但的学习和进步,挖掘出更多未知的先进科学技术,用这些科技技术,来更好的服务于人类,造福人类!
人工智能的明天,一定是人类尽量放松和休闲的时代,人工智能一定是能够解决人类的一些问题而来的
01:比如通过人工智能,人类可以把以前繁琐和危险的工作交给机器人去干。
02:把人类的疾病通过大数据找到解决病痛的方法。
03:通过大数据人工智能的方法计算出人类的出行数据来解决交通拥堵的问题。
04:通过人工智能预判一些犯罪行为的先兆来提前预防犯罪行为的发生!
05:在人员密集场所提前预判人流量,提前分流和限流,预防踩踏事故的发生!
06:通过人工智能模拟演算,可以真实生动的给学生讲解一些化学变化,物理变化,使教学更加生动有趣!
我只是抛砖引玉,人工智能带给人类的绝对是各方面的,超出咱现在的思维的想象的,咱们现在的人们,拭目以待,保持好心情,迎接全新的未来!
1.什么是人工智能
人工智能(ArtificialIntelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。
2.人工智能的层次结构
基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。
算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。
计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索、医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。
语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“RadioRex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如AppleSiri,Echo等。
自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。
规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。
3.人工智能应用场景
3.1.语音处理
?语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。
–前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。
–语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。
–语义识别和对话管理:更多属于自然语言处理的范畴。
–语音合成:文本分析、语言学分析、音长估算、发音参数估计等。
?应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。
?未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。
3.2.计算机视觉
?计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。
–图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。
–图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。
–图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。
?应用:
–医疗成像分析被用来提高疾病的预测、诊断和治疗。
–在安防及监控领域被用来指认嫌疑人。
–在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。
?未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。
3.3.自然语言处理
?自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。
–知识图谱:基于语义层面对知识进行组织后得到的结构化结果。
–对话管理:包含闲聊、问答、任务驱动型对话。
–机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。
?应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。
4.AI、机器学习、深度学习的关系
4.1.人工智能四要素
1)数据
如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。
2)算法
主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。
3)算力
人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。
另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。
4)场景
人工智能经典的应用场景包括:
用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别4.2.三者关系简述
人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。
机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。
深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
去年,一篇题为《腾讯没有梦想》的文章说,腾讯正在丧失产品能力和创业精神,变成一家投资公司。
这家快20岁的公司正在变得功利和短视,他的强项不再是产品业务,而是投资财技。
文章称,2011年3Q大战后,腾讯走上了开放投资道路,大举对外投资。但与此同时,腾讯失去了内部的产品和创新能力,在搜索、微博、电商、信息流、短视频、云等核心战场不断溃败。
以短视频为例,2013年腾讯即推出App微视,但该产品在2015年成为弃子,2017年3月关闭。但微视错过的日子里,快手、抖音异军突起,成为现象级App。
腾讯曾经引以为豪的赛马机制,“不算是一个真正的机制”,导致资源浪费。腾讯内部在沟通协作上蕃篱重重,存在各个BG争蛋糕、而不是把蛋糕做大的情况。腾讯已经不知道自己要什么,丧失了梦想。
看了《腾讯没有梦想》这篇文章,确实写得不错,文章迅速刷屏,还被人转给马化腾。
马化腾的回应马化腾在微信上回应称,看了,有批评蛮好。
马化腾表示,投资的原因是从腾讯核心优势出发,从QQ开始就意识到社交产品的核心优势是流量。除了自主开拓多条事业线利用好这些流量以外,把不核心的、不专业的项目通过投资交给其他更合适的团队去做,如此更能将资源利用和效益最大化。历史也总是告诫我们要重视新的团队,不可能什么事都能自己做;关于产品,这也是我们一直在反思的。
抛开众多项目导致的精力原因,确实需要产品团队有更大的决心和耐心做出更优秀的产品。因为这也是我的初心。从写第一行代码开始,我的理想都是如何做出最好的产品,而不是赚多少钱,这点我相信公司很多同事都是这样想的。
腾讯没有梦想?腾讯到底有没有梦想?我认为腾讯是一家有理想的公司。
腾讯初创时期,当马华腾要把腾讯100万卖给雷军时,估计没什么梦想,只有压力,但今天腾讯发展成为市值3万多亿的巨无霸时,如果没有梦想,怎么能做到?你做一家给我看看,公司能做成巨头,一定是价值观。责任感和使命感驱动。
腾讯的战略是非常清晰的:以社交为根据地,打造流量高地,用流量赋能。其次,腾讯被人诟病的模仿,抄袭,哪一家中国互联网公司在模式和产品上没有模仿?
百度、阿里?没有模仿吗?腾讯的核心产品就是社交产品,很聚焦,很有竞争力。
朱啸虎这么评价腾讯腾讯的核心根据地是社交网络,人的连接一直是流量高地,流量是溢出的······王者荣耀8个月做到2000万日活,刺激战场4个月做到5000万日活,这是腾讯的产品能力。
再次,肯定不能做完所有的产品。
围绕社社交做生态,很合理,很正常。
最后,公司做大了,需要用资本流量双驱动。
流量还是很重要的,用系统进行赋能生态,打造平台,用资本进行投资和入股有错吗?
不排除也不排斥成为一家投资公司。
深知精准营销创始人,CEO蒋军2019,为企业量身定制年度顾问服务。
互联网营销是一项大工程,系统而庞杂,蒋老师在2019年,征集3家对互联网转型升级有烈需求的中小企业或者创业型小微企业(具备一定的产品、团队及资源基础),由蒋老师亲自担任企业品牌营销及互联网战略转型升级顾问,辅导企业的品牌营销及互联网营销升级落地!
新书《互联网精准营销》正式出版,预定私信,预计4月中旬发货。
好了,文章到这里就结束啦,如果本次分享的关于人工智能的评论和关于人工智能的评论语问题对您有所帮助,还望关注下本站哦!