人工智能领域选题?人工智能领域
15
2024-06-10
大家好,今天给各位分享超声人工智能的一些知识,其中也会对超声人工智能公司进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!
本文目录
1.虹软科技。AI视觉龙头,服务于智能手机、智能汽车、物联网等。
2.圣邦股份。AI模拟芯片龙头,应用于语音识别、超声测距、红外避障等。
3.汇川技术。自动化伺服系统中以9.8%的份额占据国内龙头。
4.绿的谐波。国内RV减速机龙头,国内市场份额超过20%。
5.科沃斯。各类家庭服务机器人、清洁类小家电等智能家用设备及相关零部件。
6.柏楚电子。定增3亿元用于人工智能,切入下游焊接工作。
7.埃斯顿。工业机器人收入占比67%,国内工业机器人龙头。
8.云从科技。AI四小龙之一,国内人工智能领先企业。
9.赛为智能。国内最专业的智能化系统细分龙头,拥有全自动化智能电、人脸识别。
10.泰禾智能:智能检测分选装备及工业机器人装备龙头。
1.什么是人工智能
人工智能(ArtificialIntelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。
2.人工智能的层次结构
基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。
算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。
计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索、医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。
语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“RadioRex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如AppleSiri,Echo等。
自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。
规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。
3.人工智能应用场景
3.1.语音处理
?语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。
–前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。
–语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。
–语义识别和对话管理:更多属于自然语言处理的范畴。
–语音合成:文本分析、语言学分析、音长估算、发音参数估计等。
?应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。
?未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。
3.2.计算机视觉
?计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。
–图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。
–图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。
–图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。
?应用:
–医疗成像分析被用来提高疾病的预测、诊断和治疗。
–在安防及监控领域被用来指认嫌疑人。
–在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。
?未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。
3.3.自然语言处理
?自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。
–知识图谱:基于语义层面对知识进行组织后得到的结构化结果。
–对话管理:包含闲聊、问答、任务驱动型对话。
–机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。
?应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。
4.AI、机器学习、深度学习的关系
4.1.人工智能四要素
1)数据
如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。
2)算法
主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。
3)算力
人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。
另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。
4)场景
人工智能经典的应用场景包括:
用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别4.2.三者关系简述
人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。
机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。
深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
目前来看,在医学领域,AI已经帮助医生在做一些辅助性的工作了。
比如在疾病诊断方面,2017年,阿里推出了“ET医疗大脑”,在某些疾病诊断方面,比医生准确率还高。例如在超声甲状腺结节诊断上,阿里AI学习了2万张甲状腺片源。通常情况下,人类准确判断率是60-70%,但有了人工智能的帮助,准确率已经提升到85%
同时阿里也在和浙江建德市第一人民医院合作推出了AI病历师,病历是医务人员对患者疾病发生、发展、转轨,进行检查、诊断、治疗等医疗活动过程的记录。病历上的每个信息,都可能对病人的住院费用结算,司法与伤残鉴定,疾病预防等产生重要影响。此前,手写病历因其难以辨认的字迹,经常被患者誉为“天书”。
阿里落地的AI病历师质检在医生书写病历的同时,实时提醒其不合规内容,从源头杜绝非规范病历的产生。该系统还能自动识别医生的诊断是否符合医疗规范,给诊疗上一道AI保险。
目前该AI病历质检系统已经涵盖了入院记录、病程记录、医患谈话记录、手术记录、医嘱单在内的8大医疗文书类型,整体质检点超过180个。
在提高患者的就诊体验上,AI也有一些新的进展,Facebook的人工智能(AI)实验室正与纽约大学医学院合作,尝试将核磁共振成像(MRI)的检查速度提高10倍,假如成功的话,未来放射科医生将在几分钟内就可以完成检测。
未来随着医疗AI能力的不断进化,AI将能够帮助医生做更多的事,使医生能够把精力集中在更重要的事情上。
01无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等
02人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
03机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
04声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
05智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
06智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
07智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作
08个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
09医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像
10图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
好了,文章到这里就结束啦,如果本次分享的超声人工智能和超声人工智能公司问题对您有所帮助,还望关注下本站哦!